Toward Automatic Threat Recognition for Airport X-ray Baggage Screening\n with Deep Convolutional Object Detection Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1912.06329
For the safety of the traveling public, the Transportation Security\nAdministration (TSA) operates security checkpoints at airports in the United\nStates, seeking to keep dangerous items off airplanes. At these checkpoints,\nthe TSA employs a fleet of X-ray scanners, such as the Rapiscan 620DV, so\nTransportation Security Officers (TSOs) can inspect the contents of carry-on\npossessions. However, identifying and locating all potential threats can be a\nchallenging task. As a result, the TSA has taken a recent interest in deep\nlearning-based automated detection algorithms that can assist TSOs. In a\ncollaboration funded by the TSA, we collected a sizable new dataset of X-ray\nscans with a diverse set of threats in a wide array of contexts, trained\nseveral deep convolutional object detection models, and integrated such models\ninto the Rapiscan 620DV, resulting in functional prototypes capable of\noperating in real time. We show performance of our models on held-out\nevaluation sets, analyze several design parameters, and demonstrate the\npotential of such systems for automated detection of threats that can be found\nin airports.\n
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1912.06329
- https://arxiv.org/pdf/1912.06329
- OA Status
- green
- Cited By
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4287994947
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4287994947Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1912.06329Digital Object Identifier
- Title
-
Toward Automatic Threat Recognition for Airport X-ray Baggage Screening\n with Deep Convolutional Object DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-12-13Full publication date if available
- Authors
-
Kevin J Liang, John B. Sigman, Gregory P. Spell, D. A. Strellis, William S. C. Chang, Felix Liu, Tejas S. Mehta, Lawrence CarinList of authors in order
- Landing page
-
https://arxiv.org/abs/1912.06329Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1912.06329Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1912.06329Direct OA link when available
- Concepts
-
Task (project management), Computer science, Object detection, Set (abstract data type), Public security, Deep learning, Airport security, Artificial intelligence, Convolutional neural network, Object (grammar), Computer security, Pattern recognition (psychology), Engineering, Systems engineering, Programming language, Political science, Public administrationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
31Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 5, 2023: 9, 2022: 5, 2021: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4287994947 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1912.06329 |
| ids.openalex | https://openalex.org/W4287994947 |
| fwci | 1.38951484 |
| type | preprint |
| title | Toward Automatic Threat Recognition for Airport X-ray Baggage Screening\n with Deep Convolutional Object Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9596999883651733 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11689 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9401999711990356 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Adversarial Robustness in Machine Learning |
| topics[2].id | https://openalex.org/T12386 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9244999885559082 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced X-ray and CT Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780451532 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6914023160934448 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[0].display_name | Task (project management) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6667051315307617 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2776151529 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6255647540092468 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[2].display_name | Object detection |
| concepts[3].id | https://openalex.org/C177264268 |
| concepts[3].level | 2 |
| concepts[3].score | 0.562509298324585 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[3].display_name | Set (abstract data type) |
| concepts[4].id | https://openalex.org/C2986045029 |
| concepts[4].level | 2 |
| concepts[4].score | 0.548624575138092 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q294240 |
| concepts[4].display_name | Public security |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5371392965316772 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C180646296 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5341854095458984 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1378517 |
| concepts[6].display_name | Airport security |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.510672390460968 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C81363708 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49069178104400635 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[8].display_name | Convolutional neural network |
| concepts[9].id | https://openalex.org/C2781238097 |
| concepts[9].level | 2 |
| concepts[9].score | 0.48536455631256104 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[9].display_name | Object (grammar) |
| concepts[10].id | https://openalex.org/C38652104 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4440622925758362 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[10].display_name | Computer security |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.2683607339859009 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.21220284700393677 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C201995342 |
| concepts[13].level | 1 |
| concepts[13].score | 0.13044220209121704 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[13].display_name | Systems engineering |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| concepts[15].id | https://openalex.org/C17744445 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[15].display_name | Political science |
| concepts[16].id | https://openalex.org/C3116431 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q31728 |
| concepts[16].display_name | Public administration |
| keywords[0].id | https://openalex.org/keywords/task |
| keywords[0].score | 0.6914023160934448 |
| keywords[0].display_name | Task (project management) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6667051315307617 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/object-detection |
| keywords[2].score | 0.6255647540092468 |
| keywords[2].display_name | Object detection |
| keywords[3].id | https://openalex.org/keywords/set |
| keywords[3].score | 0.562509298324585 |
| keywords[3].display_name | Set (abstract data type) |
| keywords[4].id | https://openalex.org/keywords/public-security |
| keywords[4].score | 0.548624575138092 |
| keywords[4].display_name | Public security |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.5371392965316772 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/airport-security |
| keywords[6].score | 0.5341854095458984 |
| keywords[6].display_name | Airport security |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.510672390460968 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[8].score | 0.49069178104400635 |
| keywords[8].display_name | Convolutional neural network |
| keywords[9].id | https://openalex.org/keywords/object |
| keywords[9].score | 0.48536455631256104 |
| keywords[9].display_name | Object (grammar) |
| keywords[10].id | https://openalex.org/keywords/computer-security |
| keywords[10].score | 0.4440622925758362 |
| keywords[10].display_name | Computer security |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.2683607339859009 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.21220284700393677 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/systems-engineering |
| keywords[13].score | 0.13044220209121704 |
| keywords[13].display_name | Systems engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1912.06329 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1912.06329 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1912.06329 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5061499526 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0221-9108 |
| authorships[0].author.display_name | Kevin J Liang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liang, Kevin J |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5070896748 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2440-8695 |
| authorships[1].author.display_name | John B. Sigman |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sigman, John B. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5072522626 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Gregory P. Spell |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Spell, Gregory P. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5026484147 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | D. A. Strellis |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Strellis, Dan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5110107743 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | William S. C. Chang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chang, William |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5021379121 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8288-2817 |
| authorships[5].author.display_name | Felix Liu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Liu, Felix |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5034990813 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9464-8104 |
| authorships[6].author.display_name | Tejas S. Mehta |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Mehta, Tejas |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5016448581 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6277-7948 |
| authorships[7].author.display_name | Lawrence Carin |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Carin, Lawrence |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1912.06329 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Toward Automatic Threat Recognition for Airport X-ray Baggage Screening\n with Deep Convolutional Object Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9596999883651733 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W4226493464, https://openalex.org/W4312417841, https://openalex.org/W3193565141, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3167935049, https://openalex.org/W3103566983, https://openalex.org/W3029198973, https://openalex.org/W2949096641, https://openalex.org/W2970686063 |
| cited_by_count | 31 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 9 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 5 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:1912.06329 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1912.06329 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1912.06329 |
| primary_location.id | pmh:oai:arXiv.org:1912.06329 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1912.06329 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1912.06329 |
| publication_date | 2019-12-13 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 31, 63, 69, 89, 96, 102 |
| abstract_inverted_index.As | 62 |
| abstract_inverted_index.At | 26 |
| abstract_inverted_index.In | 81 |
| abstract_inverted_index.We | 129 |
| abstract_inverted_index.as | 37 |
| abstract_inverted_index.at | 14 |
| abstract_inverted_index.be | 59, 155 |
| abstract_inverted_index.by | 84 |
| abstract_inverted_index.in | 16, 72, 101, 121, 126 |
| abstract_inverted_index.of | 3, 33, 49, 93, 99, 105, 132, 145, 151 |
| abstract_inverted_index.on | 135 |
| abstract_inverted_index.to | 20 |
| abstract_inverted_index.we | 87 |
| abstract_inverted_index.For | 0 |
| abstract_inverted_index.TSA | 29, 66 |
| abstract_inverted_index.all | 55 |
| abstract_inverted_index.and | 53, 113, 142 |
| abstract_inverted_index.can | 45, 58, 78, 154 |
| abstract_inverted_index.for | 148 |
| abstract_inverted_index.has | 67 |
| abstract_inverted_index.new | 91 |
| abstract_inverted_index.off | 24 |
| abstract_inverted_index.our | 133 |
| abstract_inverted_index.set | 98 |
| abstract_inverted_index.the | 1, 4, 7, 17, 38, 47, 65, 85, 117 |
| abstract_inverted_index.TSA, | 86 |
| abstract_inverted_index.deep | 108 |
| abstract_inverted_index.keep | 21 |
| abstract_inverted_index.real | 127 |
| abstract_inverted_index.show | 130 |
| abstract_inverted_index.such | 36, 115, 146 |
| abstract_inverted_index.that | 77, 153 |
| abstract_inverted_index.wide | 103 |
| abstract_inverted_index.with | 95 |
| abstract_inverted_index.(TSA) | 10 |
| abstract_inverted_index.TSOs. | 80 |
| abstract_inverted_index.X-ray | 34 |
| abstract_inverted_index.array | 104 |
| abstract_inverted_index.fleet | 32 |
| abstract_inverted_index.items | 23 |
| abstract_inverted_index.sets, | 137 |
| abstract_inverted_index.taken | 68 |
| abstract_inverted_index.task. | 61 |
| abstract_inverted_index.these | 27 |
| abstract_inverted_index.time. | 128 |
| abstract_inverted_index.(TSOs) | 44 |
| abstract_inverted_index.620DV, | 40, 119 |
| abstract_inverted_index.assist | 79 |
| abstract_inverted_index.design | 140 |
| abstract_inverted_index.funded | 83 |
| abstract_inverted_index.models | 134 |
| abstract_inverted_index.object | 110 |
| abstract_inverted_index.recent | 70 |
| abstract_inverted_index.safety | 2 |
| abstract_inverted_index.analyze | 138 |
| abstract_inverted_index.capable | 124 |
| abstract_inverted_index.dataset | 92 |
| abstract_inverted_index.diverse | 97 |
| abstract_inverted_index.employs | 30 |
| abstract_inverted_index.inspect | 46 |
| abstract_inverted_index.models, | 112 |
| abstract_inverted_index.public, | 6 |
| abstract_inverted_index.result, | 64 |
| abstract_inverted_index.seeking | 19 |
| abstract_inverted_index.several | 139 |
| abstract_inverted_index.sizable | 90 |
| abstract_inverted_index.systems | 147 |
| abstract_inverted_index.threats | 57, 100, 152 |
| abstract_inverted_index.However, | 51 |
| abstract_inverted_index.Officers | 43 |
| abstract_inverted_index.Rapiscan | 39, 118 |
| abstract_inverted_index.Security | 42 |
| abstract_inverted_index.airports | 15 |
| abstract_inverted_index.contents | 48 |
| abstract_inverted_index.interest | 71 |
| abstract_inverted_index.locating | 54 |
| abstract_inverted_index.operates | 11 |
| abstract_inverted_index.security | 12 |
| abstract_inverted_index.automated | 74, 149 |
| abstract_inverted_index.collected | 88 |
| abstract_inverted_index.contexts, | 106 |
| abstract_inverted_index.dangerous | 22 |
| abstract_inverted_index.detection | 75, 111, 150 |
| abstract_inverted_index.found\nin | 156 |
| abstract_inverted_index.potential | 56 |
| abstract_inverted_index.resulting | 120 |
| abstract_inverted_index.scanners, | 35 |
| abstract_inverted_index.traveling | 5 |
| abstract_inverted_index.airplanes. | 25 |
| abstract_inverted_index.algorithms | 76 |
| abstract_inverted_index.functional | 122 |
| abstract_inverted_index.integrated | 114 |
| abstract_inverted_index.prototypes | 123 |
| abstract_inverted_index.airports.\n | 157 |
| abstract_inverted_index.checkpoints | 13 |
| abstract_inverted_index.demonstrate | 143 |
| abstract_inverted_index.identifying | 52 |
| abstract_inverted_index.parameters, | 141 |
| abstract_inverted_index.performance | 131 |
| abstract_inverted_index.X-ray\nscans | 94 |
| abstract_inverted_index.models\ninto | 116 |
| abstract_inverted_index.convolutional | 109 |
| abstract_inverted_index.of\noperating | 125 |
| abstract_inverted_index.Transportation | 8 |
| abstract_inverted_index.a\nchallenging | 60 |
| abstract_inverted_index.the\npotential | 144 |
| abstract_inverted_index.United\nStates, | 18 |
| abstract_inverted_index.a\ncollaboration | 82 |
| abstract_inverted_index.trained\nseveral | 107 |
| abstract_inverted_index.checkpoints,\nthe | 28 |
| abstract_inverted_index.so\nTransportation | 41 |
| abstract_inverted_index.deep\nlearning-based | 73 |
| abstract_inverted_index.held-out\nevaluation | 136 |
| abstract_inverted_index.carry-on\npossessions. | 50 |
| abstract_inverted_index.Security\nAdministration | 9 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.85339452 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |