Toward data-driven solutions to interactive dynamic influence diagrams Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1007/s10115-021-01600-5
With the availability of significant amount of data, data-driven decision making becomes an alternative way for solving complex multiagent decision problems. Instead of using domain knowledge to explicitly build decision models, the data-driven approach learns decisions (probably optimal ones) from available data. This removes the knowledge bottleneck in the traditional knowledge-driven decision making, which requires a strong support from domain experts. In this paper, we study data-driven decision making in the context of interactive dynamic influence diagrams (I-DIDs)—a general framework for multiagent sequential decision making under uncertainty. We propose a data-driven framework to solve the I-DIDs model and focus on learning the behavior of other agents in problem domains. The challenge is on learning a complete policy tree that will be embedded in the I-DIDs models due to limited data. We propose two new methods to develop complete policy trees for the other agents in the I-DIDs. The first method uses a simple clustering process, while the second one employs sophisticated statistical checks. We analyze the proposed algorithms in a theoretical way and experiment them over two problem domains.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s10115-021-01600-5
- https://link.springer.com/content/pdf/10.1007/s10115-021-01600-5.pdf
- OA Status
- hybrid
- Cited By
- 6
- References
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3183539237
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3183539237Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s10115-021-01600-5Digital Object Identifier
- Title
-
Toward data-driven solutions to interactive dynamic influence diagramsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-08Full publication date if available
- Authors
-
Yinghui Pan, Jing Tang, Biyang Ma, Yifeng Zeng, Zhong MingList of authors in order
- Landing page
-
https://doi.org/10.1007/s10115-021-01600-5Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s10115-021-01600-5.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s10115-021-01600-5.pdfDirect OA link when available
- Concepts
-
Computer science, Influence diagram, Bottleneck, Cluster analysis, Machine learning, Decision tree, Domain (mathematical analysis), Artificial intelligence, Context (archaeology), Domain knowledge, Dynamic decision-making, Process (computing), Data mining, Mathematics, Mathematical analysis, Biology, Paleontology, Embedded system, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 1, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
44Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3183539237 |
|---|---|
| doi | https://doi.org/10.1007/s10115-021-01600-5 |
| ids.doi | https://doi.org/10.1007/s10115-021-01600-5 |
| ids.mag | 3183539237 |
| ids.openalex | https://openalex.org/W3183539237 |
| fwci | 0.70551788 |
| type | article |
| title | Toward data-driven solutions to interactive dynamic influence diagrams |
| biblio.issue | 9 |
| biblio.volume | 63 |
| biblio.last_page | 2453 |
| biblio.first_page | 2431 |
| topics[0].id | https://openalex.org/T11303 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9901999831199646 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Modeling and Causal Inference |
| topics[1].id | https://openalex.org/T11810 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9692000150680542 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Complex Systems and Decision Making |
| topics[2].id | https://openalex.org/T10799 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9397000074386597 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Data Visualization and Analytics |
| is_xpac | False |
| apc_list.value | 2290 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2890 |
| apc_paid.value | 2290 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2890 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8007438778877258 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C20837028 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6946513056755066 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q623966 |
| concepts[1].display_name | Influence diagram |
| concepts[2].id | https://openalex.org/C2780513914 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6665061116218567 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q18210350 |
| concepts[2].display_name | Bottleneck |
| concepts[3].id | https://openalex.org/C73555534 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5646253228187561 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[3].display_name | Cluster analysis |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5438680052757263 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C84525736 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5380845069885254 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[5].display_name | Decision tree |
| concepts[6].id | https://openalex.org/C36503486 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5213648080825806 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[6].display_name | Domain (mathematical analysis) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5074803233146667 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C2779343474 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49683287739753723 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[8].display_name | Context (archaeology) |
| concepts[9].id | https://openalex.org/C207685749 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4764585793018341 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2088941 |
| concepts[9].display_name | Domain knowledge |
| concepts[10].id | https://openalex.org/C174988536 |
| concepts[10].level | 2 |
| concepts[10].score | 0.46645206212997437 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5318965 |
| concepts[10].display_name | Dynamic decision-making |
| concepts[11].id | https://openalex.org/C98045186 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4316253662109375 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[11].display_name | Process (computing) |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.39403998851776123 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1174955666065216 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C151730666 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[16].display_name | Paleontology |
| concepts[17].id | https://openalex.org/C149635348 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[17].display_name | Embedded system |
| concepts[18].id | https://openalex.org/C111919701 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[18].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8007438778877258 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/influence-diagram |
| keywords[1].score | 0.6946513056755066 |
| keywords[1].display_name | Influence diagram |
| keywords[2].id | https://openalex.org/keywords/bottleneck |
| keywords[2].score | 0.6665061116218567 |
| keywords[2].display_name | Bottleneck |
| keywords[3].id | https://openalex.org/keywords/cluster-analysis |
| keywords[3].score | 0.5646253228187561 |
| keywords[3].display_name | Cluster analysis |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5438680052757263 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/decision-tree |
| keywords[5].score | 0.5380845069885254 |
| keywords[5].display_name | Decision tree |
| keywords[6].id | https://openalex.org/keywords/domain |
| keywords[6].score | 0.5213648080825806 |
| keywords[6].display_name | Domain (mathematical analysis) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.5074803233146667 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/context |
| keywords[8].score | 0.49683287739753723 |
| keywords[8].display_name | Context (archaeology) |
| keywords[9].id | https://openalex.org/keywords/domain-knowledge |
| keywords[9].score | 0.4764585793018341 |
| keywords[9].display_name | Domain knowledge |
| keywords[10].id | https://openalex.org/keywords/dynamic-decision-making |
| keywords[10].score | 0.46645206212997437 |
| keywords[10].display_name | Dynamic decision-making |
| keywords[11].id | https://openalex.org/keywords/process |
| keywords[11].score | 0.4316253662109375 |
| keywords[11].display_name | Process (computing) |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.39403998851776123 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.1174955666065216 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1007/s10115-021-01600-5 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S81770430 |
| locations[0].source.issn | 0219-1377, 0219-3116 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0219-1377 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Knowledge and Information Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s10115-021-01600-5.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Knowledge and Information Systems |
| locations[0].landing_page_url | https://doi.org/10.1007/s10115-021-01600-5 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5085263461 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5715-2855 |
| authorships[0].author.display_name | Yinghui Pan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China |
| authorships[0].institutions[0].id | https://openalex.org/I180726961 |
| authorships[0].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shenzhen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yinghui Pan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China |
| authorships[1].author.id | https://openalex.org/A5077270486 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0785-707X |
| authorships[1].author.display_name | Jing Tang |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I32394136 |
| authorships[1].affiliations[0].raw_affiliation_string | Newcastle Business School, Northumbria University, Newcastle upon Tyne, UK |
| authorships[1].institutions[0].id | https://openalex.org/I32394136 |
| authorships[1].institutions[0].ror | https://ror.org/049e6bc10 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I32394136 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Northumbria University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jing Tang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Newcastle Business School, Northumbria University, Newcastle upon Tyne, UK |
| authorships[2].author.id | https://openalex.org/A5082379297 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1515-6449 |
| authorships[2].author.display_name | Biyang Ma |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I32394136 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK |
| authorships[2].institutions[0].id | https://openalex.org/I32394136 |
| authorships[2].institutions[0].ror | https://ror.org/049e6bc10 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I32394136 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Northumbria University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Biyang Ma |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK |
| authorships[3].author.id | https://openalex.org/A5100653058 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5246-403X |
| authorships[3].author.display_name | Yifeng Zeng |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I32394136 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK |
| authorships[3].institutions[0].id | https://openalex.org/I32394136 |
| authorships[3].institutions[0].ror | https://ror.org/049e6bc10 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I32394136 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | Northumbria University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yifeng Zeng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK |
| authorships[4].author.id | https://openalex.org/A5100633979 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6933-5760 |
| authorships[4].author.display_name | Zhong Ming |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China |
| authorships[4].institutions[0].id | https://openalex.org/I180726961 |
| authorships[4].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shenzhen University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhong Ming |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s10115-021-01600-5.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Toward data-driven solutions to interactive dynamic influence diagrams |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11303 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9901999831199646 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Modeling and Causal Inference |
| related_works | https://openalex.org/W787402332, https://openalex.org/W2368398071, https://openalex.org/W3123102830, https://openalex.org/W2188214825, https://openalex.org/W2011862483, https://openalex.org/W3022567966, https://openalex.org/W3005679258, https://openalex.org/W2539548808, https://openalex.org/W3003242261, https://openalex.org/W2081426463 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s10115-021-01600-5 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S81770430 |
| best_oa_location.source.issn | 0219-1377, 0219-3116 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0219-1377 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Knowledge and Information Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10115-021-01600-5.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Knowledge and Information Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s10115-021-01600-5 |
| primary_location.id | doi:10.1007/s10115-021-01600-5 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S81770430 |
| primary_location.source.issn | 0219-1377, 0219-3116 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0219-1377 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Knowledge and Information Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10115-021-01600-5.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Knowledge and Information Systems |
| primary_location.landing_page_url | https://doi.org/10.1007/s10115-021-01600-5 |
| publication_date | 2021-08-08 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2758442112, https://openalex.org/W2924816077, https://openalex.org/W2149347032, https://openalex.org/W1975263215, https://openalex.org/W2127561239, https://openalex.org/W2149551746, https://openalex.org/W4250744658, https://openalex.org/W4233413206, https://openalex.org/W2913758949, https://openalex.org/W1998754086, https://openalex.org/W2125556586, https://openalex.org/W745775011, https://openalex.org/W139860952, https://openalex.org/W1836954812, https://openalex.org/W2029280655, https://openalex.org/W2965997659, https://openalex.org/W2034725503, https://openalex.org/W1606056663, https://openalex.org/W1540107443, https://openalex.org/W2129229483, https://openalex.org/W2199047389, https://openalex.org/W1965167605, https://openalex.org/W2214916780, https://openalex.org/W1550554223, https://openalex.org/W138607541, https://openalex.org/W3098853508, https://openalex.org/W4285719527, https://openalex.org/W801500266, https://openalex.org/W2774006724, https://openalex.org/W2290894907, https://openalex.org/W1957906757, https://openalex.org/W1936503582, https://openalex.org/W2109886784, https://openalex.org/W2292678626, https://openalex.org/W2963067607, https://openalex.org/W2139774323, https://openalex.org/W2109223704, https://openalex.org/W2128672031, https://openalex.org/W2951266800, https://openalex.org/W2399706643, https://openalex.org/W2103012681, https://openalex.org/W2296090963, https://openalex.org/W2122905566, https://openalex.org/W2100735950 |
| referenced_works_count | 44 |
| abstract_inverted_index.a | 56, 90, 115, 152, 170 |
| abstract_inverted_index.In | 62 |
| abstract_inverted_index.We | 88, 131, 164 |
| abstract_inverted_index.an | 13 |
| abstract_inverted_index.be | 121 |
| abstract_inverted_index.in | 48, 70, 107, 123, 145, 169 |
| abstract_inverted_index.is | 112 |
| abstract_inverted_index.of | 4, 7, 23, 73, 104 |
| abstract_inverted_index.on | 100, 113 |
| abstract_inverted_index.to | 27, 93, 128, 136 |
| abstract_inverted_index.we | 65 |
| abstract_inverted_index.The | 110, 148 |
| abstract_inverted_index.and | 98, 173 |
| abstract_inverted_index.due | 127 |
| abstract_inverted_index.for | 16, 81, 141 |
| abstract_inverted_index.new | 134 |
| abstract_inverted_index.one | 159 |
| abstract_inverted_index.the | 2, 32, 45, 49, 71, 95, 102, 124, 142, 146, 157, 166 |
| abstract_inverted_index.two | 133, 177 |
| abstract_inverted_index.way | 15, 172 |
| abstract_inverted_index.This | 43 |
| abstract_inverted_index.With | 1 |
| abstract_inverted_index.from | 40, 59 |
| abstract_inverted_index.over | 176 |
| abstract_inverted_index.that | 119 |
| abstract_inverted_index.them | 175 |
| abstract_inverted_index.this | 63 |
| abstract_inverted_index.tree | 118 |
| abstract_inverted_index.uses | 151 |
| abstract_inverted_index.will | 120 |
| abstract_inverted_index.build | 29 |
| abstract_inverted_index.data, | 8 |
| abstract_inverted_index.data. | 42, 130 |
| abstract_inverted_index.first | 149 |
| abstract_inverted_index.focus | 99 |
| abstract_inverted_index.model | 97 |
| abstract_inverted_index.ones) | 39 |
| abstract_inverted_index.other | 105, 143 |
| abstract_inverted_index.solve | 94 |
| abstract_inverted_index.study | 66 |
| abstract_inverted_index.trees | 140 |
| abstract_inverted_index.under | 86 |
| abstract_inverted_index.using | 24 |
| abstract_inverted_index.which | 54 |
| abstract_inverted_index.while | 156 |
| abstract_inverted_index.I-DIDs | 96, 125 |
| abstract_inverted_index.agents | 106, 144 |
| abstract_inverted_index.amount | 6 |
| abstract_inverted_index.domain | 25, 60 |
| abstract_inverted_index.learns | 35 |
| abstract_inverted_index.making | 11, 69, 85 |
| abstract_inverted_index.method | 150 |
| abstract_inverted_index.models | 126 |
| abstract_inverted_index.paper, | 64 |
| abstract_inverted_index.policy | 117, 139 |
| abstract_inverted_index.second | 158 |
| abstract_inverted_index.simple | 153 |
| abstract_inverted_index.strong | 57 |
| abstract_inverted_index.I-DIDs. | 147 |
| abstract_inverted_index.Instead | 22 |
| abstract_inverted_index.analyze | 165 |
| abstract_inverted_index.becomes | 12 |
| abstract_inverted_index.checks. | 163 |
| abstract_inverted_index.complex | 18 |
| abstract_inverted_index.context | 72 |
| abstract_inverted_index.develop | 137 |
| abstract_inverted_index.dynamic | 75 |
| abstract_inverted_index.employs | 160 |
| abstract_inverted_index.general | 79 |
| abstract_inverted_index.limited | 129 |
| abstract_inverted_index.making, | 53 |
| abstract_inverted_index.methods | 135 |
| abstract_inverted_index.models, | 31 |
| abstract_inverted_index.optimal | 38 |
| abstract_inverted_index.problem | 108, 178 |
| abstract_inverted_index.propose | 89, 132 |
| abstract_inverted_index.removes | 44 |
| abstract_inverted_index.solving | 17 |
| abstract_inverted_index.support | 58 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.approach | 34 |
| abstract_inverted_index.behavior | 103 |
| abstract_inverted_index.complete | 116, 138 |
| abstract_inverted_index.decision | 10, 20, 30, 52, 68, 84 |
| abstract_inverted_index.diagrams | 77 |
| abstract_inverted_index.domains. | 109, 179 |
| abstract_inverted_index.embedded | 122 |
| abstract_inverted_index.experts. | 61 |
| abstract_inverted_index.learning | 101, 114 |
| abstract_inverted_index.process, | 155 |
| abstract_inverted_index.proposed | 167 |
| abstract_inverted_index.requires | 55 |
| abstract_inverted_index.(probably | 37 |
| abstract_inverted_index.available | 41 |
| abstract_inverted_index.challenge | 111 |
| abstract_inverted_index.decisions | 36 |
| abstract_inverted_index.framework | 80, 92 |
| abstract_inverted_index.influence | 76 |
| abstract_inverted_index.knowledge | 26, 46 |
| abstract_inverted_index.problems. | 21 |
| abstract_inverted_index.algorithms | 168 |
| abstract_inverted_index.bottleneck | 47 |
| abstract_inverted_index.clustering | 154 |
| abstract_inverted_index.experiment | 174 |
| abstract_inverted_index.explicitly | 28 |
| abstract_inverted_index.multiagent | 19, 82 |
| abstract_inverted_index.sequential | 83 |
| abstract_inverted_index.alternative | 14 |
| abstract_inverted_index.data-driven | 9, 33, 67, 91 |
| abstract_inverted_index.interactive | 74 |
| abstract_inverted_index.significant | 5 |
| abstract_inverted_index.statistical | 162 |
| abstract_inverted_index.theoretical | 171 |
| abstract_inverted_index.traditional | 50 |
| abstract_inverted_index.(I-DIDs)—a | 78 |
| abstract_inverted_index.availability | 3 |
| abstract_inverted_index.uncertainty. | 87 |
| abstract_inverted_index.sophisticated | 161 |
| abstract_inverted_index.knowledge-driven | 51 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.76286806 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |