Toward Energy-efficient STT-MRAM-based Near Memory Computing Architecture for Embedded Systems Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1145/3650729
Convolutional Neural Networks (CNNs) have significantly impacted embedded system applications across various domains. However, this exacerbates the real-time processing and hardware resource-constrained challenges of embedded systems. To tackle these issues, we propose spin-transfer torque magnetic random-access memory (STT-MRAM)-based near memory computing (NMC) design for embedded systems. We optimize this design from three aspects: Fast-pipelined STT-MRAM readout scheme provides higher memory bandwidth for NMC design, enhancing real-time processing capability with a non-trivial area overhead. Direct index compression format in conjunction with digital sparse matrix-vector multiplication (SpMV) accelerator supports various matrices of practical applications that alleviate computing resource requirements. Custom NMC instructions and stream converter for NMC systems dynamically adjust available hardware resources for better utilization. Experimental results demonstrate that the memory bandwidth of STT-MRAM achieves 26.7 GB/s. Energy consumption and latency improvement of digital SpMV accelerator are up to 64× and 1,120× across sparsity matrices spanning from 10% to 99.8%. Single-precision and double-precision elements transmission increased up to 8× and 9.6×, respectively. Furthermore, our design achieves a throughput of up to 15.9× over state-of-the-art designs.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3650729
- OA Status
- hybrid
- Cited By
- 1
- References
- 82
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392553413
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392553413Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3650729Digital Object Identifier
- Title
-
Toward Energy-efficient STT-MRAM-based Near Memory Computing Architecture for Embedded SystemsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-07Full publication date if available
- Authors
-
Yueting Li, Xueyan Wang, He Zhang, Biao Pan, Keni Qiu, Wang Kang, Jun Wang, Weisheng ZhaoList of authors in order
- Landing page
-
https://doi.org/10.1145/3650729Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1145/3650729Direct OA link when available
- Concepts
-
Magnetoresistive random-access memory, Computer science, Computer architecture, Embedded system, Architecture, Parallel computing, Computer hardware, Random access memory, Visual arts, ArtTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
82Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392553413 |
|---|---|
| doi | https://doi.org/10.1145/3650729 |
| ids.doi | https://doi.org/10.1145/3650729 |
| ids.openalex | https://openalex.org/W4392553413 |
| fwci | 0.36916847 |
| type | article |
| title | Toward Energy-efficient STT-MRAM-based Near Memory Computing Architecture for Embedded Systems |
| awards[0].id | https://openalex.org/G2907095412 |
| awards[0].funder_id | https://openalex.org/F4320336578 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2022a05020018 |
| awards[0].funder_display_name | Anhui Provincial Key Research and Development Plan |
| awards[1].id | https://openalex.org/G8928659953 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 92164206, 62271026, 62001014, 62274008, 61872251, 52121001, and 62004011 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 3 |
| biblio.volume | 23 |
| biblio.last_page | 24 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10502 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced Memory and Neural Computing |
| topics[1].id | https://openalex.org/T12808 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Ferroelectric and Negative Capacitance Devices |
| topics[2].id | https://openalex.org/T10054 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9997000098228455 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1708 |
| topics[2].subfield.display_name | Hardware and Architecture |
| topics[2].display_name | Parallel Computing and Optimization Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320336578 |
| funders[1].ror | |
| funders[1].display_name | Anhui Provincial Key Research and Development Plan |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C46891859 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8828022480010986 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1061546 |
| concepts[0].display_name | Magnetoresistive random-access memory |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6054596304893494 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C118524514 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5655867457389832 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q173212 |
| concepts[2].display_name | Computer architecture |
| concepts[3].id | https://openalex.org/C149635348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5163465738296509 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[3].display_name | Embedded system |
| concepts[4].id | https://openalex.org/C123657996 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47269347310066223 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12271 |
| concepts[4].display_name | Architecture |
| concepts[5].id | https://openalex.org/C173608175 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3904581665992737 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[5].display_name | Parallel computing |
| concepts[6].id | https://openalex.org/C9390403 |
| concepts[6].level | 1 |
| concepts[6].score | 0.29213598370552063 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3966 |
| concepts[6].display_name | Computer hardware |
| concepts[7].id | https://openalex.org/C2994168587 |
| concepts[7].level | 2 |
| concepts[7].score | 0.15896007418632507 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5295 |
| concepts[7].display_name | Random access memory |
| concepts[8].id | https://openalex.org/C153349607 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[8].display_name | Visual arts |
| concepts[9].id | https://openalex.org/C142362112 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[9].display_name | Art |
| keywords[0].id | https://openalex.org/keywords/magnetoresistive-random-access-memory |
| keywords[0].score | 0.8828022480010986 |
| keywords[0].display_name | Magnetoresistive random-access memory |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6054596304893494 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/computer-architecture |
| keywords[2].score | 0.5655867457389832 |
| keywords[2].display_name | Computer architecture |
| keywords[3].id | https://openalex.org/keywords/embedded-system |
| keywords[3].score | 0.5163465738296509 |
| keywords[3].display_name | Embedded system |
| keywords[4].id | https://openalex.org/keywords/architecture |
| keywords[4].score | 0.47269347310066223 |
| keywords[4].display_name | Architecture |
| keywords[5].id | https://openalex.org/keywords/parallel-computing |
| keywords[5].score | 0.3904581665992737 |
| keywords[5].display_name | Parallel computing |
| keywords[6].id | https://openalex.org/keywords/computer-hardware |
| keywords[6].score | 0.29213598370552063 |
| keywords[6].display_name | Computer hardware |
| keywords[7].id | https://openalex.org/keywords/random-access-memory |
| keywords[7].score | 0.15896007418632507 |
| keywords[7].display_name | Random access memory |
| language | en |
| locations[0].id | doi:10.1145/3650729 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S136160450 |
| locations[0].source.issn | 1539-9087, 1558-3465 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1539-9087 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | ACM Transactions on Embedded Computing Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_name | Association for Computing Machinery |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_lineage_names | Association for Computing Machinery |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ACM Transactions on Embedded Computing Systems |
| locations[0].landing_page_url | https://doi.org/10.1145/3650729 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100610069 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8874-6269 |
| authorships[0].author.display_name | Yueting Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[0].affiliations[0].raw_affiliation_string | Beihang University, Beijing, China |
| authorships[0].institutions[0].id | https://openalex.org/I82880672 |
| authorships[0].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beihang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yueting Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beihang University, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5100390413 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0080-4730 |
| authorships[1].author.display_name | Xueyan Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[1].affiliations[0].raw_affiliation_string | Beihang University, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I82880672 |
| authorships[1].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beihang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xueyan Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Beihang University, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5100420104 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9262-3106 |
| authorships[2].author.display_name | He Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[2].affiliations[0].raw_affiliation_string | Beihang University, Beijing, China |
| authorships[2].institutions[0].id | https://openalex.org/I82880672 |
| authorships[2].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beihang University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | He Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Beihang University, Beijing, China |
| authorships[3].author.id | https://openalex.org/A5015444611 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9524-7617 |
| authorships[3].author.display_name | Biao Pan |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[3].affiliations[0].raw_affiliation_string | Beihang University, Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I82880672 |
| authorships[3].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beihang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Biao Pan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Beihang University, Beijing, China |
| authorships[4].author.id | https://openalex.org/A5026823951 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5851-777X |
| authorships[4].author.display_name | Keni Qiu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I96852419 |
| authorships[4].affiliations[0].raw_affiliation_string | Capital Normal University, Beijing, China |
| authorships[4].institutions[0].id | https://openalex.org/I96852419 |
| authorships[4].institutions[0].ror | https://ror.org/005edt527 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I96852419 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Capital Normal University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Keni Qiu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Capital Normal University, Beijing, China |
| authorships[5].author.id | https://openalex.org/A5100381646 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3169-6034 |
| authorships[5].author.display_name | Wang Kang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[5].affiliations[0].raw_affiliation_string | Beihang University, Beijing, China |
| authorships[5].institutions[0].id | https://openalex.org/I82880672 |
| authorships[5].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Beihang University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wang Kang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Beihang University, Beijing, China |
| authorships[6].author.id | https://openalex.org/A5100384651 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8955-3530 |
| authorships[6].author.display_name | Jun Wang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[6].affiliations[0].raw_affiliation_string | Beihang University, Beijing, China |
| authorships[6].institutions[0].id | https://openalex.org/I82880672 |
| authorships[6].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Beihang University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jun Wang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Beihang University, Beijing, China |
| authorships[7].author.id | https://openalex.org/A5066473925 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-8088-0404 |
| authorships[7].author.display_name | Weisheng Zhao |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[7].affiliations[0].raw_affiliation_string | Beihang University, Beijing, China |
| authorships[7].institutions[0].id | https://openalex.org/I82880672 |
| authorships[7].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Beihang University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Weisheng Zhao |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Beihang University, Beijing, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1145/3650729 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Toward Energy-efficient STT-MRAM-based Near Memory Computing Architecture for Embedded Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10502 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced Memory and Neural Computing |
| related_works | https://openalex.org/W3146164987, https://openalex.org/W2086829516, https://openalex.org/W2141626281, https://openalex.org/W1641143370, https://openalex.org/W2472395098, https://openalex.org/W2128922810, https://openalex.org/W1908441109, https://openalex.org/W1579280934, https://openalex.org/W2047360450, https://openalex.org/W2038503502 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3650729 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S136160450 |
| best_oa_location.source.issn | 1539-9087, 1558-3465 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1539-9087 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | ACM Transactions on Embedded Computing Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_name | Association for Computing Machinery |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_lineage_names | Association for Computing Machinery |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ACM Transactions on Embedded Computing Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3650729 |
| primary_location.id | doi:10.1145/3650729 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S136160450 |
| primary_location.source.issn | 1539-9087, 1558-3465 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1539-9087 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | ACM Transactions on Embedded Computing Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_name | Association for Computing Machinery |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_lineage_names | Association for Computing Machinery |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ACM Transactions on Embedded Computing Systems |
| primary_location.landing_page_url | https://doi.org/10.1145/3650729 |
| publication_date | 2024-03-07 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2623629680, https://openalex.org/W3039972296, https://openalex.org/W3044335092, https://openalex.org/W4205230840, https://openalex.org/W3217082322, https://openalex.org/W1916668514, https://openalex.org/W3016245653, https://openalex.org/W3092254747, https://openalex.org/W3199508312, https://openalex.org/W3132871189, https://openalex.org/W4226154345, https://openalex.org/W3164004073, https://openalex.org/W4211113317, https://openalex.org/W4360605730, https://openalex.org/W4221039638, https://openalex.org/W4224265992, https://openalex.org/W4235535008, https://openalex.org/W3125908175, https://openalex.org/W2108816571, https://openalex.org/W4211147898, https://openalex.org/W3202859956, https://openalex.org/W3115226260, https://openalex.org/W4293251144, https://openalex.org/W4284886102, https://openalex.org/W4214734582, https://openalex.org/W2759398875, https://openalex.org/W3092394454, https://openalex.org/W2950629094, https://openalex.org/W3133395503, https://openalex.org/W3172819050, https://openalex.org/W3015495519, https://openalex.org/W4225291778, https://openalex.org/W2947350915, https://openalex.org/W2998228662, https://openalex.org/W4220696112, https://openalex.org/W4285730081, https://openalex.org/W2593172471, https://openalex.org/W2801055138, https://openalex.org/W4225943547, https://openalex.org/W2082375193, https://openalex.org/W3092085719, https://openalex.org/W3184933955, https://openalex.org/W4312855541, https://openalex.org/W4309226126, https://openalex.org/W2971445524, https://openalex.org/W4313168610, https://openalex.org/W3125547981, https://openalex.org/W3200470386, https://openalex.org/W3108816215, https://openalex.org/W4308083824, https://openalex.org/W3202661131, https://openalex.org/W3188178661, https://openalex.org/W4280557507, https://openalex.org/W2921480401, https://openalex.org/W2898122376, https://openalex.org/W3087988169, https://openalex.org/W3171744009, https://openalex.org/W2276486856, https://openalex.org/W2008164459, https://openalex.org/W2612832886, https://openalex.org/W3102223484, https://openalex.org/W3213774990, https://openalex.org/W3203242999, https://openalex.org/W3017702538, https://openalex.org/W3133874331, https://openalex.org/W2791023210, https://openalex.org/W2924773594, https://openalex.org/W3092431517, https://openalex.org/W4221145728, https://openalex.org/W3189987728, https://openalex.org/W3109152005, https://openalex.org/W3203332826, https://openalex.org/W3089664868, https://openalex.org/W3217719968, https://openalex.org/W4381785326, https://openalex.org/W2912786975, https://openalex.org/W4381050447, https://openalex.org/W3213903995, https://openalex.org/W2884227506, https://openalex.org/W2962947399, https://openalex.org/W3200969900, https://openalex.org/W4287662994 |
| referenced_works_count | 82 |
| abstract_inverted_index.a | 69, 165 |
| abstract_inverted_index.To | 26 |
| abstract_inverted_index.We | 46 |
| abstract_inverted_index.in | 77 |
| abstract_inverted_index.of | 23, 89, 121, 131, 167 |
| abstract_inverted_index.to | 137, 147, 156, 169 |
| abstract_inverted_index.up | 136, 155, 168 |
| abstract_inverted_index.we | 30 |
| abstract_inverted_index.10% | 146 |
| abstract_inverted_index.8× | 157 |
| abstract_inverted_index.NMC | 62, 98, 104 |
| abstract_inverted_index.and | 19, 100, 128, 139, 150, 158 |
| abstract_inverted_index.are | 135 |
| abstract_inverted_index.for | 43, 61, 103, 111 |
| abstract_inverted_index.our | 162 |
| abstract_inverted_index.the | 16, 118 |
| abstract_inverted_index.26.7 | 124 |
| abstract_inverted_index.64× | 138 |
| abstract_inverted_index.SpMV | 133 |
| abstract_inverted_index.area | 71 |
| abstract_inverted_index.from | 50, 145 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.near | 38 |
| abstract_inverted_index.over | 171 |
| abstract_inverted_index.that | 92, 117 |
| abstract_inverted_index.this | 14, 48 |
| abstract_inverted_index.with | 68, 79 |
| abstract_inverted_index.(NMC) | 41 |
| abstract_inverted_index.GB/s. | 125 |
| abstract_inverted_index.index | 74 |
| abstract_inverted_index.these | 28 |
| abstract_inverted_index.three | 51 |
| abstract_inverted_index.(CNNs) | 3 |
| abstract_inverted_index.(SpMV) | 84 |
| abstract_inverted_index.15.9× | 170 |
| abstract_inverted_index.9.6×, | 159 |
| abstract_inverted_index.99.8%. | 148 |
| abstract_inverted_index.Custom | 97 |
| abstract_inverted_index.Direct | 73 |
| abstract_inverted_index.Energy | 126 |
| abstract_inverted_index.Neural | 1 |
| abstract_inverted_index.across | 10, 141 |
| abstract_inverted_index.adjust | 107 |
| abstract_inverted_index.better | 112 |
| abstract_inverted_index.design | 42, 49, 163 |
| abstract_inverted_index.format | 76 |
| abstract_inverted_index.higher | 58 |
| abstract_inverted_index.memory | 36, 39, 59, 119 |
| abstract_inverted_index.scheme | 56 |
| abstract_inverted_index.sparse | 81 |
| abstract_inverted_index.stream | 101 |
| abstract_inverted_index.system | 8 |
| abstract_inverted_index.tackle | 27 |
| abstract_inverted_index.torque | 33 |
| abstract_inverted_index.1,120× | 140 |
| abstract_inverted_index.design, | 63 |
| abstract_inverted_index.digital | 80, 132 |
| abstract_inverted_index.issues, | 29 |
| abstract_inverted_index.latency | 129 |
| abstract_inverted_index.propose | 31 |
| abstract_inverted_index.readout | 55 |
| abstract_inverted_index.results | 115 |
| abstract_inverted_index.systems | 105 |
| abstract_inverted_index.various | 11, 87 |
| abstract_inverted_index.However, | 13 |
| abstract_inverted_index.Networks | 2 |
| abstract_inverted_index.STT-MRAM | 54, 122 |
| abstract_inverted_index.achieves | 123, 164 |
| abstract_inverted_index.aspects: | 52 |
| abstract_inverted_index.designs. | 173 |
| abstract_inverted_index.domains. | 12 |
| abstract_inverted_index.elements | 152 |
| abstract_inverted_index.embedded | 7, 24, 44 |
| abstract_inverted_index.hardware | 20, 109 |
| abstract_inverted_index.impacted | 6 |
| abstract_inverted_index.magnetic | 34 |
| abstract_inverted_index.matrices | 88, 143 |
| abstract_inverted_index.optimize | 47 |
| abstract_inverted_index.provides | 57 |
| abstract_inverted_index.resource | 95 |
| abstract_inverted_index.spanning | 144 |
| abstract_inverted_index.sparsity | 142 |
| abstract_inverted_index.supports | 86 |
| abstract_inverted_index.systems. | 25, 45 |
| abstract_inverted_index.alleviate | 93 |
| abstract_inverted_index.available | 108 |
| abstract_inverted_index.bandwidth | 60, 120 |
| abstract_inverted_index.computing | 40, 94 |
| abstract_inverted_index.converter | 102 |
| abstract_inverted_index.enhancing | 64 |
| abstract_inverted_index.increased | 154 |
| abstract_inverted_index.overhead. | 72 |
| abstract_inverted_index.practical | 90 |
| abstract_inverted_index.real-time | 17, 65 |
| abstract_inverted_index.resources | 110 |
| abstract_inverted_index.capability | 67 |
| abstract_inverted_index.challenges | 22 |
| abstract_inverted_index.processing | 18, 66 |
| abstract_inverted_index.throughput | 166 |
| abstract_inverted_index.accelerator | 85, 134 |
| abstract_inverted_index.compression | 75 |
| abstract_inverted_index.conjunction | 78 |
| abstract_inverted_index.consumption | 127 |
| abstract_inverted_index.demonstrate | 116 |
| abstract_inverted_index.dynamically | 106 |
| abstract_inverted_index.exacerbates | 15 |
| abstract_inverted_index.improvement | 130 |
| abstract_inverted_index.non-trivial | 70 |
| abstract_inverted_index.Experimental | 114 |
| abstract_inverted_index.Furthermore, | 161 |
| abstract_inverted_index.applications | 9, 91 |
| abstract_inverted_index.instructions | 99 |
| abstract_inverted_index.transmission | 153 |
| abstract_inverted_index.utilization. | 113 |
| abstract_inverted_index.Convolutional | 0 |
| abstract_inverted_index.matrix-vector | 82 |
| abstract_inverted_index.random-access | 35 |
| abstract_inverted_index.requirements. | 96 |
| abstract_inverted_index.respectively. | 160 |
| abstract_inverted_index.significantly | 5 |
| abstract_inverted_index.spin-transfer | 32 |
| abstract_inverted_index.Fast-pipelined | 53 |
| abstract_inverted_index.multiplication | 83 |
| abstract_inverted_index.(STT-MRAM)-based | 37 |
| abstract_inverted_index.Single-precision | 149 |
| abstract_inverted_index.double-precision | 151 |
| abstract_inverted_index.state-of-the-art | 172 |
| abstract_inverted_index.resource-constrained | 21 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.52443108 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |