Toward precision EEG: Assessing the reliability of individual-level ERPs across EEG Systems Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.11.10.687573
Event-related potentials (ERPs) are among the most established tools for studying the neural mechanisms of perception and cognition. Advancing toward precision EEG, however, places new demands for a better understanding of how reliable neural markers are at the individual subject level. We conducted two complementary experiments to examine the reliability of N100 and P300 components in an auditory oddball paradigm with three sounds (Standard, Target, and Novel). In Experiment 1 , we evaluated the consistency at both the group level and the individual level across four EEG systems: one research-grade wired system (BioSemi) and three mobile devices—Smarting, DSI-24, and EPOC X. At the group level, all systems demonstrated the canonical N100 and P300 components; however, the EPOC X system showed a significantly reduced signal-to-noise ratio compared to the others. At the individual level, temporal and spatial clustering analyses showed that N100 and P300 components were detectable in most individuals (70–85%), with additional significant responses appearing outside this range. We further calculated the similarity of individual responses across participants (“typicality index”), which revealed highly consistent responses to Standard and Novel sounds, alongside divergent patterns of responses to Targets. In Experiment 2 , we assessed the within-participant reliability of N100 and P300 using a test–retest design. Results indicated high within-participant consistency of response patterns for all three stimuli, demonstrating that individual ERPs remain reliably stable over time, even when they deviate from canonical group-level patterns. The current study contributes to the ongoing discussion regarding the utility and reliability of ERP-based metrics for precision imaging and highlights important methodological considerations for their practical implementation.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.1101/2025.11.10.687573
- https://www.biorxiv.org/content/biorxiv/early/2025/11/11/2025.11.10.687573.full.pdf
- OA Status
- green
- References
- 109
- OpenAlex ID
- https://openalex.org/W7105196278
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7105196278Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.11.10.687573Digital Object Identifier
- Title
-
Toward precision EEG: Assessing the reliability of individual-level ERPs across EEG SystemsWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-11Full publication date if available
- Authors
-
Adi Korisky, Eshsed Rabinovitch, Paz Har-shai Yahav, Bruce D. McCandliss, Elana Zion Golumbic, Eshed Rabinovitch, Paz Har-shai Yahav, Bruce McCandliss, Elana Zion GolumbicList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.11.10.687573Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/11/11/2025.11.10.687573.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/11/11/2025.11.10.687573.full.pdfDirect OA link when available
- Concepts
-
N100, Reliability (semiconductor), Electroencephalography, Computer science, Metric (unit), Perception, Consistency (knowledge bases), Psychology, Speech recognition, Pattern recognition (psychology), Similarity (geometry), Artificial intelligence, Cluster analysis, Representation (politics), Event-related potential, Cognitive psychology, Brain–computer interface, Machine learning, Mismatch negativity, Audiology, Canonical correlation, Endophenotype, Interpretability, Neurophysiology, P200Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
109Number of works referenced by this work
Full payload
| id | https://openalex.org/W7105196278 |
|---|---|
| doi | https://doi.org/10.1101/2025.11.10.687573 |
| ids.doi | https://doi.org/10.1101/2025.11.10.687573 |
| ids.openalex | https://openalex.org/W7105196278 |
| fwci | 0.0 |
| type | article |
| title | Toward precision EEG: Assessing the reliability of individual-level ERPs across EEG Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.7260720133781433 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10241 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.07063112407922745 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Functional Brain Connectivity Studies |
| topics[2].id | https://openalex.org/T10042 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.05318623408675194 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural and Behavioral Psychology Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C107297811 |
| concepts[0].level | 4 |
| concepts[0].score | 0.9130101203918457 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6951890 |
| concepts[0].display_name | N100 |
| concepts[1].id | https://openalex.org/C43214815 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6766431331634521 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7310987 |
| concepts[1].display_name | Reliability (semiconductor) |
| concepts[2].id | https://openalex.org/C522805319 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6717754006385803 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[2].display_name | Electroencephalography |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5525220632553101 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C176217482 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5050204396247864 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[4].display_name | Metric (unit) |
| concepts[5].id | https://openalex.org/C26760741 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48099836707115173 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[5].display_name | Perception |
| concepts[6].id | https://openalex.org/C2776436953 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4702267646789551 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[6].display_name | Consistency (knowledge bases) |
| concepts[7].id | https://openalex.org/C15744967 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4697856903076172 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[7].display_name | Psychology |
| concepts[8].id | https://openalex.org/C28490314 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4530876874923706 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[8].display_name | Speech recognition |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4243687391281128 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C103278499 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4125184416770935 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[10].display_name | Similarity (geometry) |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3937458097934723 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C73555534 |
| concepts[12].level | 2 |
| concepts[12].score | 0.35907256603240967 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[12].display_name | Cluster analysis |
| concepts[13].id | https://openalex.org/C2776359362 |
| concepts[13].level | 3 |
| concepts[13].score | 0.35096487402915955 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[13].display_name | Representation (politics) |
| concepts[14].id | https://openalex.org/C67359045 |
| concepts[14].level | 3 |
| concepts[14].score | 0.3480992317199707 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q14026181 |
| concepts[14].display_name | Event-related potential |
| concepts[15].id | https://openalex.org/C180747234 |
| concepts[15].level | 1 |
| concepts[15].score | 0.3098817467689514 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[15].display_name | Cognitive psychology |
| concepts[16].id | https://openalex.org/C173201364 |
| concepts[16].level | 3 |
| concepts[16].score | 0.304688960313797 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q897410 |
| concepts[16].display_name | Brain–computer interface |
| concepts[17].id | https://openalex.org/C119857082 |
| concepts[17].level | 1 |
| concepts[17].score | 0.3001753091812134 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[17].display_name | Machine learning |
| concepts[18].id | https://openalex.org/C21715850 |
| concepts[18].level | 3 |
| concepts[18].score | 0.29686352610588074 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2720968 |
| concepts[18].display_name | Mismatch negativity |
| concepts[19].id | https://openalex.org/C548259974 |
| concepts[19].level | 1 |
| concepts[19].score | 0.29483386874198914 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q569965 |
| concepts[19].display_name | Audiology |
| concepts[20].id | https://openalex.org/C153874254 |
| concepts[20].level | 2 |
| concepts[20].score | 0.2811669111251831 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q115542 |
| concepts[20].display_name | Canonical correlation |
| concepts[21].id | https://openalex.org/C187869287 |
| concepts[21].level | 3 |
| concepts[21].score | 0.2689322233200073 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q2032061 |
| concepts[21].display_name | Endophenotype |
| concepts[22].id | https://openalex.org/C2781067378 |
| concepts[22].level | 2 |
| concepts[22].score | 0.26158609986305237 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[22].display_name | Interpretability |
| concepts[23].id | https://openalex.org/C152478114 |
| concepts[23].level | 2 |
| concepts[23].score | 0.2550584375858307 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q660910 |
| concepts[23].display_name | Neurophysiology |
| concepts[24].id | https://openalex.org/C142933453 |
| concepts[24].level | 4 |
| concepts[24].score | 0.25499090552330017 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q7117840 |
| concepts[24].display_name | P200 |
| keywords[0].id | https://openalex.org/keywords/n100 |
| keywords[0].score | 0.9130101203918457 |
| keywords[0].display_name | N100 |
| keywords[1].id | https://openalex.org/keywords/reliability |
| keywords[1].score | 0.6766431331634521 |
| keywords[1].display_name | Reliability (semiconductor) |
| keywords[2].id | https://openalex.org/keywords/electroencephalography |
| keywords[2].score | 0.6717754006385803 |
| keywords[2].display_name | Electroencephalography |
| keywords[3].id | https://openalex.org/keywords/metric |
| keywords[3].score | 0.5050204396247864 |
| keywords[3].display_name | Metric (unit) |
| keywords[4].id | https://openalex.org/keywords/perception |
| keywords[4].score | 0.48099836707115173 |
| keywords[4].display_name | Perception |
| keywords[5].id | https://openalex.org/keywords/consistency |
| keywords[5].score | 0.4702267646789551 |
| keywords[5].display_name | Consistency (knowledge bases) |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.4243687391281128 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/similarity |
| keywords[7].score | 0.4125184416770935 |
| keywords[7].display_name | Similarity (geometry) |
| language | |
| locations[0].id | doi:10.1101/2025.11.10.687573 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/11/11/2025.11.10.687573.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.11.10.687573 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A2983446748 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Adi Korisky |
| authorships[0].countries | IL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I13955877 |
| authorships[0].affiliations[0].raw_affiliation_string | Bar Ilan University, Standford University; |
| authorships[0].institutions[0].id | https://openalex.org/I13955877 |
| authorships[0].institutions[0].ror | https://ror.org/https://ror.org/03kgsv495 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I13955877 |
| authorships[0].institutions[0].country_code | IL |
| authorships[0].institutions[0].display_name | Bar-Ilan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Adi Korisky |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Bar Ilan University, Standford University; |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Eshsed Rabinovitch |
| authorships[1].countries | IL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I13955877 |
| authorships[1].affiliations[0].raw_affiliation_string | Bar Ilan University; |
| authorships[1].institutions[0].id | https://openalex.org/I13955877 |
| authorships[1].institutions[0].ror | https://ror.org/https://ror.org/03kgsv495 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I13955877 |
| authorships[1].institutions[0].country_code | IL |
| authorships[1].institutions[0].display_name | Bar-Ilan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Eshsed Rabinovitch |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Bar Ilan University; |
| authorships[2].author.id | https://openalex.org/A4308207307 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3666-3338 |
| authorships[2].author.display_name | Paz Har-shai Yahav |
| authorships[2].countries | IL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I13955877 |
| authorships[2].affiliations[0].raw_affiliation_string | Bar Ilan University; |
| authorships[2].institutions[0].id | https://openalex.org/I13955877 |
| authorships[2].institutions[0].ror | https://ror.org/https://ror.org/03kgsv495 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I13955877 |
| authorships[2].institutions[0].country_code | IL |
| authorships[2].institutions[0].display_name | Bar-Ilan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Paz Har-Shai Yahav |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Bar Ilan University; |
| authorships[3].author.id | https://openalex.org/A2129415014 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9393-3421 |
| authorships[3].author.display_name | Bruce D. McCandliss |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[3].affiliations[0].raw_affiliation_string | Stanford University |
| authorships[3].institutions[0].id | https://openalex.org/I97018004 |
| authorships[3].institutions[0].ror | https://ror.org/https://ror.org/00f54p054 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Stanford University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Bruce D McCandliss |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Stanford University |
| authorships[4].author.id | https://openalex.org/A1488847677 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8831-3188 |
| authorships[4].author.display_name | Elana Zion Golumbic |
| authorships[4].countries | IL |
| authorships[4].institutions[0].id | https://openalex.org/I13955877 |
| authorships[4].institutions[0].ror | https://ror.org/https://ror.org/03kgsv495 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I13955877 |
| authorships[4].institutions[0].country_code | IL |
| authorships[4].institutions[0].display_name | Bar-Ilan University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Elana Zion-Golumbic |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A2617110365 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Eshed Rabinovitch |
| authorships[5].countries | IL |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I13955877 |
| authorships[5].affiliations[0].raw_affiliation_string | Bar Ilan University; |
| authorships[5].institutions[0].id | https://openalex.org/I13955877 |
| authorships[5].institutions[0].ror | https://ror.org/https://ror.org/03kgsv495 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I13955877 |
| authorships[5].institutions[0].country_code | IL |
| authorships[5].institutions[0].display_name | Bar-Ilan University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Eshed Rabinovitch |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Bar Ilan University; |
| authorships[6].author.id | https://openalex.org/A4308207307 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3666-3338 |
| authorships[6].author.display_name | Paz Har-shai Yahav |
| authorships[6].countries | IL |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I13955877 |
| authorships[6].affiliations[0].raw_affiliation_string | Bar Ilan University; |
| authorships[6].institutions[0].id | https://openalex.org/I13955877 |
| authorships[6].institutions[0].ror | https://ror.org/https://ror.org/03kgsv495 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I13955877 |
| authorships[6].institutions[0].country_code | IL |
| authorships[6].institutions[0].display_name | Bar-Ilan University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Paz Har-shai Yahav |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Bar Ilan University; |
| authorships[7].author.id | https://openalex.org/A3186931464 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Bruce McCandliss |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[7].affiliations[0].raw_affiliation_string | Stanford University |
| authorships[7].institutions[0].id | https://openalex.org/I97018004 |
| authorships[7].institutions[0].ror | https://ror.org/https://ror.org/00f54p054 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Stanford University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Bruce McCandliss |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Stanford University |
| authorships[8].author.id | https://openalex.org/A1488847677 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-8831-3188 |
| authorships[8].author.display_name | Elana Zion Golumbic |
| authorships[8].countries | IL |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I13955877 |
| authorships[8].affiliations[0].raw_affiliation_string | Bar Ilan University; |
| authorships[8].institutions[0].id | https://openalex.org/I13955877 |
| authorships[8].institutions[0].ror | https://ror.org/https://ror.org/03kgsv495 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I13955877 |
| authorships[8].institutions[0].country_code | IL |
| authorships[8].institutions[0].display_name | Bar-Ilan University |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Elana Zion Golumbic |
| authorships[8].is_corresponding | True |
| authorships[8].raw_affiliation_strings | Bar Ilan University; |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2025/11/11/2025.11.10.687573.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-12T00:00:00 |
| display_name | Toward precision EEG: Assessing the reliability of individual-level ERPs across EEG Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-13T23:09:34.443669 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.7260720133781433 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2025.11.10.687573 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/11/11/2025.11.10.687573.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.11.10.687573 |
| primary_location.id | doi:10.1101/2025.11.10.687573 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/11/11/2025.11.10.687573.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.11.10.687573 |
| publication_date | 2025-11-11 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3026525979, https://openalex.org/W4401033738, https://openalex.org/W1999783865, https://openalex.org/W2067039550, https://openalex.org/W2527878485, https://openalex.org/W2002022498, https://openalex.org/W4309490405, https://openalex.org/W2962993737, https://openalex.org/W2078300002, https://openalex.org/W2075931307, https://openalex.org/W4283466681, https://openalex.org/W2009814490, https://openalex.org/W2032085365, https://openalex.org/W4365445819, https://openalex.org/W3186878607, https://openalex.org/W2964546587, https://openalex.org/W2065640661, https://openalex.org/W2101309289, https://openalex.org/W1983764894, https://openalex.org/W2344945222, https://openalex.org/W2002313059, https://openalex.org/W2323345712, https://openalex.org/W2141220295, https://openalex.org/W2153837947, https://openalex.org/W2970654342, https://openalex.org/W2119985414, https://openalex.org/W2293011685, https://openalex.org/W2064632764, https://openalex.org/W3045104022, https://openalex.org/W4295763024, https://openalex.org/W2741941708, https://openalex.org/W4393235658, https://openalex.org/W2944738074, https://openalex.org/W2609541368, https://openalex.org/W1133644724, https://openalex.org/W2131042661, https://openalex.org/W2381239061, https://openalex.org/W2954252413, https://openalex.org/W1977127683, https://openalex.org/W2059291967, https://openalex.org/W4386117319, https://openalex.org/W3137545549, https://openalex.org/W2753748302, https://openalex.org/W1985094789, https://openalex.org/W4207055513, https://openalex.org/W2047500578, https://openalex.org/W3204056100, https://openalex.org/W2146769040, https://openalex.org/W4313277766, https://openalex.org/W2118969763, https://openalex.org/W2046830094, https://openalex.org/W3002747956, https://openalex.org/W3093672414, https://openalex.org/W4327921894, https://openalex.org/W2040460393, https://openalex.org/W2973194277, https://openalex.org/W4403885879, https://openalex.org/W2999555303, https://openalex.org/W2921632962, https://openalex.org/W2057253548, https://openalex.org/W2139730760, https://openalex.org/W4236822803, https://openalex.org/W2562953409, https://openalex.org/W2120768649, https://openalex.org/W2135894974, https://openalex.org/W4211174562, https://openalex.org/W2953180938, https://openalex.org/W4399051401, https://openalex.org/W2167574726, https://openalex.org/W2091324175, https://openalex.org/W2602768412, https://openalex.org/W1773565653, https://openalex.org/W4312193421, https://openalex.org/W2037557557, https://openalex.org/W2111457126, https://openalex.org/W2166073443, https://openalex.org/W1965993150, https://openalex.org/W2159526360, https://openalex.org/W1964694219, https://openalex.org/W2099323129, https://openalex.org/W2046708571, https://openalex.org/W2001235665, https://openalex.org/W2037271325, https://openalex.org/W2104640717, https://openalex.org/W3125282555, https://openalex.org/W2332466825, https://openalex.org/W1982769242, https://openalex.org/W2884129854, https://openalex.org/W2056071671, https://openalex.org/W4392536393, https://openalex.org/W2054155363, https://openalex.org/W1983103156, https://openalex.org/W2102648300, https://openalex.org/W3082494264, https://openalex.org/W2029102464, https://openalex.org/W2060646773, https://openalex.org/W4283582702, https://openalex.org/W2002666776, https://openalex.org/W2086213036, https://openalex.org/W1984316793, https://openalex.org/W2064059030, https://openalex.org/W2024938223, https://openalex.org/W1971109120, https://openalex.org/W2131646842, https://openalex.org/W2004474280, https://openalex.org/W1964436076, https://openalex.org/W2779952608, https://openalex.org/W4213334966, https://openalex.org/W2956483222 |
| referenced_works_count | 109 |
| abstract_inverted_index., | 71, 191 |
| abstract_inverted_index.1 | 70 |
| abstract_inverted_index.2 | 190 |
| abstract_inverted_index.X | 118 |
| abstract_inverted_index.a | 28, 121, 202 |
| abstract_inverted_index.At | 102, 130 |
| abstract_inverted_index.In | 68, 188 |
| abstract_inverted_index.We | 42, 159 |
| abstract_inverted_index.X. | 101 |
| abstract_inverted_index.an | 57 |
| abstract_inverted_index.at | 37, 76 |
| abstract_inverted_index.in | 56, 147 |
| abstract_inverted_index.of | 15, 31, 51, 164, 184, 197, 210, 247 |
| abstract_inverted_index.to | 47, 127, 176, 186, 238 |
| abstract_inverted_index.we | 72, 192 |
| abstract_inverted_index.EEG | 87 |
| abstract_inverted_index.The | 234 |
| abstract_inverted_index.all | 106, 214 |
| abstract_inverted_index.and | 17, 53, 66, 81, 94, 99, 112, 135, 142, 178, 199, 245, 253 |
| abstract_inverted_index.are | 4, 36 |
| abstract_inverted_index.for | 10, 27, 213, 250, 258 |
| abstract_inverted_index.how | 32 |
| abstract_inverted_index.new | 25 |
| abstract_inverted_index.one | 89 |
| abstract_inverted_index.the | 6, 12, 38, 49, 74, 78, 82, 103, 109, 116, 128, 131, 162, 194, 239, 243 |
| abstract_inverted_index.two | 44 |
| abstract_inverted_index.EEG, | 22 |
| abstract_inverted_index.EPOC | 100, 117 |
| abstract_inverted_index.ERPs | 220 |
| abstract_inverted_index.N100 | 52, 111, 141, 198 |
| abstract_inverted_index.P300 | 54, 113, 143, 200 |
| abstract_inverted_index.both | 77 |
| abstract_inverted_index.even | 226 |
| abstract_inverted_index.four | 86 |
| abstract_inverted_index.from | 230 |
| abstract_inverted_index.high | 207 |
| abstract_inverted_index.most | 7, 148 |
| abstract_inverted_index.over | 224 |
| abstract_inverted_index.that | 140, 218 |
| abstract_inverted_index.they | 228 |
| abstract_inverted_index.this | 157 |
| abstract_inverted_index.were | 145 |
| abstract_inverted_index.when | 227 |
| abstract_inverted_index.with | 61, 151 |
| abstract_inverted_index.Novel | 179 |
| abstract_inverted_index.among | 5 |
| abstract_inverted_index.group | 79, 104 |
| abstract_inverted_index.level | 80, 84 |
| abstract_inverted_index.ratio | 125 |
| abstract_inverted_index.study | 236 |
| abstract_inverted_index.their | 259 |
| abstract_inverted_index.three | 62, 95, 215 |
| abstract_inverted_index.time, | 225 |
| abstract_inverted_index.tools | 9 |
| abstract_inverted_index.using | 201 |
| abstract_inverted_index.which | 171 |
| abstract_inverted_index.wired | 91 |
| abstract_inverted_index.(ERPs) | 3 |
| abstract_inverted_index.across | 85, 167 |
| abstract_inverted_index.better | 29 |
| abstract_inverted_index.highly | 173 |
| abstract_inverted_index.level, | 105, 133 |
| abstract_inverted_index.level. | 41 |
| abstract_inverted_index.mobile | 96 |
| abstract_inverted_index.neural | 13, 34 |
| abstract_inverted_index.places | 24 |
| abstract_inverted_index.range. | 158 |
| abstract_inverted_index.remain | 221 |
| abstract_inverted_index.showed | 120, 139 |
| abstract_inverted_index.sounds | 63 |
| abstract_inverted_index.stable | 223 |
| abstract_inverted_index.system | 92, 119 |
| abstract_inverted_index.toward | 20 |
| abstract_inverted_index.DSI-24, | 98 |
| abstract_inverted_index.Novel). | 67 |
| abstract_inverted_index.Results | 205 |
| abstract_inverted_index.Target, | 65 |
| abstract_inverted_index.current | 235 |
| abstract_inverted_index.demands | 26 |
| abstract_inverted_index.design. | 204 |
| abstract_inverted_index.deviate | 229 |
| abstract_inverted_index.examine | 48 |
| abstract_inverted_index.further | 160 |
| abstract_inverted_index.imaging | 252 |
| abstract_inverted_index.markers | 35 |
| abstract_inverted_index.metrics | 249 |
| abstract_inverted_index.oddball | 59 |
| abstract_inverted_index.ongoing | 240 |
| abstract_inverted_index.others. | 129 |
| abstract_inverted_index.outside | 156 |
| abstract_inverted_index.reduced | 123 |
| abstract_inverted_index.sounds, | 180 |
| abstract_inverted_index.spatial | 136 |
| abstract_inverted_index.subject | 40 |
| abstract_inverted_index.systems | 107 |
| abstract_inverted_index.utility | 244 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Standard | 177 |
| abstract_inverted_index.Targets. | 187 |
| abstract_inverted_index.analyses | 138 |
| abstract_inverted_index.assessed | 193 |
| abstract_inverted_index.auditory | 58 |
| abstract_inverted_index.compared | 126 |
| abstract_inverted_index.however, | 23, 115 |
| abstract_inverted_index.paradigm | 60 |
| abstract_inverted_index.patterns | 183, 212 |
| abstract_inverted_index.reliable | 33 |
| abstract_inverted_index.reliably | 222 |
| abstract_inverted_index.response | 211 |
| abstract_inverted_index.revealed | 172 |
| abstract_inverted_index.stimuli, | 216 |
| abstract_inverted_index.studying | 11 |
| abstract_inverted_index.systems: | 88 |
| abstract_inverted_index.temporal | 134 |
| abstract_inverted_index.(BioSemi) | 93 |
| abstract_inverted_index.Advancing | 19 |
| abstract_inverted_index.ERP-based | 248 |
| abstract_inverted_index.alongside | 181 |
| abstract_inverted_index.appearing | 155 |
| abstract_inverted_index.canonical | 110, 231 |
| abstract_inverted_index.conducted | 43 |
| abstract_inverted_index.divergent | 182 |
| abstract_inverted_index.evaluated | 73 |
| abstract_inverted_index.important | 255 |
| abstract_inverted_index.indicated | 206 |
| abstract_inverted_index.patterns. | 233 |
| abstract_inverted_index.practical | 260 |
| abstract_inverted_index.precision | 21, 251 |
| abstract_inverted_index.regarding | 242 |
| abstract_inverted_index.responses | 154, 166, 175, 185 |
| abstract_inverted_index.(Standard, | 64 |
| abstract_inverted_index.Experiment | 69, 189 |
| abstract_inverted_index.additional | 152 |
| abstract_inverted_index.calculated | 161 |
| abstract_inverted_index.clustering | 137 |
| abstract_inverted_index.cognition. | 18 |
| abstract_inverted_index.components | 55, 144 |
| abstract_inverted_index.consistent | 174 |
| abstract_inverted_index.detectable | 146 |
| abstract_inverted_index.discussion | 241 |
| abstract_inverted_index.highlights | 254 |
| abstract_inverted_index.index”), | 170 |
| abstract_inverted_index.individual | 39, 83, 132, 165, 219 |
| abstract_inverted_index.mechanisms | 14 |
| abstract_inverted_index.perception | 16 |
| abstract_inverted_index.potentials | 2 |
| abstract_inverted_index.similarity | 163 |
| abstract_inverted_index.(70–85%), | 150 |
| abstract_inverted_index.components; | 114 |
| abstract_inverted_index.consistency | 75, 209 |
| abstract_inverted_index.contributes | 237 |
| abstract_inverted_index.established | 8 |
| abstract_inverted_index.experiments | 46 |
| abstract_inverted_index.group-level | 232 |
| abstract_inverted_index.individuals | 149 |
| abstract_inverted_index.reliability | 50, 196, 246 |
| abstract_inverted_index.significant | 153 |
| abstract_inverted_index.demonstrated | 108 |
| abstract_inverted_index.participants | 168 |
| abstract_inverted_index.Event-related | 1 |
| abstract_inverted_index.complementary | 45 |
| abstract_inverted_index.demonstrating | 217 |
| abstract_inverted_index.significantly | 122 |
| abstract_inverted_index.test–retest | 203 |
| abstract_inverted_index.understanding | 30 |
| abstract_inverted_index.(“typicality | 169 |
| abstract_inverted_index.considerations | 257 |
| abstract_inverted_index.methodological | 256 |
| abstract_inverted_index.research-grade | 90 |
| abstract_inverted_index.implementation. | 261 |
| abstract_inverted_index.signal-to-noise | 124 |
| abstract_inverted_index.within-participant | 195, 208 |
| abstract_inverted_index.devices—Smarting, | 97 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile.value | 0.78431257 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |