Toward profitable energy futures trading strategies using reinforcement learning incorporating disagreement and connectedness methods enabled by large language models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.egyai.2025.100562
The energy market plays a fundamental role in the global economy, shaping energy prices, inflation, and financial stability across nations. As the world transitions toward low-carbon energy solutions, optimizing trading strategies in this complex and dynamic market has become increasingly critical for investors, polic-ymakers, and energy brokers. Traditional data-driven models often struggle to capture the multifaceted and interconnected factors influencing energy markets, such as macroeconomic conditions, investor sentiment, and the accelerating shift toward decarbonization. To address these challenges, a novel framework is proposed that combines reinforcement learning with methods for analyzing disagreement and connectedness, alongside advanced natural language processing techniques, to develop trading strategies for energy markets. The proposed method integrates structured time-series data with unstructured textual data to incorporate diverse factors, including the interplay between economic influences, green energy transitions, and investor sentiment. The proposed framework also employs a chain-of-reasoning technique to classify investor types, distinguishing between sentiment-driven disagreement and cross-disagreement, and utilizes a connectedness-based method to model the interrelationships among market variables, providing a comprehensive understanding of market dynamics. As a showcase, this framework is applied to the West Texas Intermediate crude oil market, demonstrating its ability to outperform traditional price-prediction-based trading strategies. Experimental results highlight that the proposed framework delivers superior investment returns while addressing key limitations of existing models in terms of data integration and flexibility. This study underscores the potential of the proposed framework as a robust and adaptable solution for optimizing trading strategies across the broader energy market, with particular relevance to the global transition toward sustainable energy systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.egyai.2025.100562
- OA Status
- gold
- Cited By
- 1
- References
- 114
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412611509
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412611509Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.egyai.2025.100562Digital Object Identifier
- Title
-
Toward profitable energy futures trading strategies using reinforcement learning incorporating disagreement and connectedness methods enabled by large language modelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-23Full publication date if available
- Authors
-
Tianxiang Cui, Yujian Ye, Yiran Li, Nanjiang Du, Xingke Song, Yicheng Zhu, Xiaoying Yang, Goran ŠtrbacList of authors in order
- Landing page
-
https://doi.org/10.1016/j.egyai.2025.100562Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.egyai.2025.100562Direct OA link when available
- Concepts
-
Futures contract, Social connectedness, Reinforcement learning, Energy (signal processing), Computer science, Reinforcement, Artificial intelligence, Financial economics, Psychology, Economics, Mathematics, Social psychology, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
114Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412611509 |
|---|---|
| doi | https://doi.org/10.1016/j.egyai.2025.100562 |
| ids.doi | https://doi.org/10.1016/j.egyai.2025.100562 |
| ids.openalex | https://openalex.org/W4412611509 |
| fwci | 5.88153818 |
| type | article |
| title | Toward profitable energy futures trading strategies using reinforcement learning incorporating disagreement and connectedness methods enabled by large language models |
| biblio.issue | |
| biblio.volume | 21 |
| biblio.last_page | 100562 |
| biblio.first_page | 100562 |
| topics[0].id | https://openalex.org/T11059 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2002 |
| topics[0].subfield.display_name | Economics and Econometrics |
| topics[0].display_name | Market Dynamics and Volatility |
| topics[1].id | https://openalex.org/T11052 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9912999868392944 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Energy Load and Power Forecasting |
| topics[2].id | https://openalex.org/T11326 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9883999824523926 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Stock Market Forecasting Methods |
| is_xpac | False |
| apc_list.value | 3000 |
| apc_list.currency | USD |
| apc_list.value_usd | 3000 |
| apc_paid.value | 3000 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3000 |
| concepts[0].id | https://openalex.org/C106306483 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8436959981918335 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q183984 |
| concepts[0].display_name | Futures contract |
| concepts[1].id | https://openalex.org/C201943243 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7957996129989624 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7551008 |
| concepts[1].display_name | Social connectedness |
| concepts[2].id | https://openalex.org/C97541855 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7451030611991882 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[2].display_name | Reinforcement learning |
| concepts[3].id | https://openalex.org/C186370098 |
| concepts[3].level | 2 |
| concepts[3].score | 0.48487386107444763 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q442787 |
| concepts[3].display_name | Energy (signal processing) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.47740522027015686 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C67203356 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46281421184539795 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1321905 |
| concepts[5].display_name | Reinforcement |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3589073717594147 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C106159729 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3200973570346832 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2294553 |
| concepts[7].display_name | Financial economics |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.27669358253479004 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C162324750 |
| concepts[9].level | 0 |
| concepts[9].score | 0.275878369808197 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[9].display_name | Economics |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1158079206943512 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C77805123 |
| concepts[11].level | 1 |
| concepts[11].score | 0.10965406894683838 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[11].display_name | Social psychology |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.05746611952781677 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/futures-contract |
| keywords[0].score | 0.8436959981918335 |
| keywords[0].display_name | Futures contract |
| keywords[1].id | https://openalex.org/keywords/social-connectedness |
| keywords[1].score | 0.7957996129989624 |
| keywords[1].display_name | Social connectedness |
| keywords[2].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[2].score | 0.7451030611991882 |
| keywords[2].display_name | Reinforcement learning |
| keywords[3].id | https://openalex.org/keywords/energy |
| keywords[3].score | 0.48487386107444763 |
| keywords[3].display_name | Energy (signal processing) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.47740522027015686 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/reinforcement |
| keywords[5].score | 0.46281421184539795 |
| keywords[5].display_name | Reinforcement |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3589073717594147 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/financial-economics |
| keywords[7].score | 0.3200973570346832 |
| keywords[7].display_name | Financial economics |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.27669358253479004 |
| keywords[8].display_name | Psychology |
| keywords[9].id | https://openalex.org/keywords/economics |
| keywords[9].score | 0.275878369808197 |
| keywords[9].display_name | Economics |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.1158079206943512 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/social-psychology |
| keywords[11].score | 0.10965406894683838 |
| keywords[11].display_name | Social psychology |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.05746611952781677 |
| keywords[12].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1016/j.egyai.2025.100562 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210241048 |
| locations[0].source.issn | 2666-5468 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2666-5468 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Energy and AI |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energy and AI |
| locations[0].landing_page_url | https://doi.org/10.1016/j.egyai.2025.100562 |
| locations[1].id | pmh:oai:doaj.org/article:7940a5101fb64d23b9ea4641090faba7 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Energy and AI, Vol 21, Iss , Pp 100562- (2025) |
| locations[1].landing_page_url | https://doaj.org/article/7940a5101fb64d23b9ea4641090faba7 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5020724945 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0102-2581 |
| authorships[0].author.display_name | Tianxiang Cui |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tianxiang Cui |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5044155484 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9278-9218 |
| authorships[1].author.display_name | Yujian Ye |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yujian Ye |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5016343250 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1632-4531 |
| authorships[2].author.display_name | Yiran Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yiran Li |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5007498582 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2029-4563 |
| authorships[3].author.display_name | Nanjiang Du |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nanjiang Du |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5018253317 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1022-6823 |
| authorships[4].author.display_name | Xingke Song |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xingke Song |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5037438708 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7280-4804 |
| authorships[5].author.display_name | Yicheng Zhu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yicheng Zhu |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5069429997 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4062-6724 |
| authorships[6].author.display_name | Xiaoying Yang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Xiaoying Yang |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5014643856 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-7421-3947 |
| authorships[7].author.display_name | Goran Štrbac |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Goran Strbac |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.egyai.2025.100562 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Toward profitable energy futures trading strategies using reinforcement learning incorporating disagreement and connectedness methods enabled by large language models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11059 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2002 |
| primary_topic.subfield.display_name | Economics and Econometrics |
| primary_topic.display_name | Market Dynamics and Volatility |
| related_works | https://openalex.org/W2995844470, https://openalex.org/W4235697092, https://openalex.org/W4233814322, https://openalex.org/W2075366185, https://openalex.org/W3123403352, https://openalex.org/W2016175128, https://openalex.org/W2145033651, https://openalex.org/W621729589, https://openalex.org/W4376270372, https://openalex.org/W1536454482 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.egyai.2025.100562 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210241048 |
| best_oa_location.source.issn | 2666-5468 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2666-5468 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Energy and AI |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energy and AI |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.egyai.2025.100562 |
| primary_location.id | doi:10.1016/j.egyai.2025.100562 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210241048 |
| primary_location.source.issn | 2666-5468 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2666-5468 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Energy and AI |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energy and AI |
| primary_location.landing_page_url | https://doi.org/10.1016/j.egyai.2025.100562 |
| publication_date | 2025-07-23 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3195190866, https://openalex.org/W4404514986, https://openalex.org/W4403862813, https://openalex.org/W4220786201, https://openalex.org/W4405827013, https://openalex.org/W4405927551, https://openalex.org/W4404136307, https://openalex.org/W2927690792, https://openalex.org/W4234451941, https://openalex.org/W4317470140, https://openalex.org/W3117732367, https://openalex.org/W4403324824, https://openalex.org/W4220901430, https://openalex.org/W6778883912, https://openalex.org/W6809646742, https://openalex.org/W4392859372, https://openalex.org/W6860599111, https://openalex.org/W4396757543, https://openalex.org/W3006271636, https://openalex.org/W4388260648, https://openalex.org/W2580130740, https://openalex.org/W2980564922, https://openalex.org/W4386797922, https://openalex.org/W3124064046, https://openalex.org/W2803549652, https://openalex.org/W2621048240, https://openalex.org/W2980734766, https://openalex.org/W3156016722, https://openalex.org/W4214735334, https://openalex.org/W2165036163, https://openalex.org/W2588083062, https://openalex.org/W4319785911, https://openalex.org/W3180126525, https://openalex.org/W3006919236, https://openalex.org/W2047454581, https://openalex.org/W4382393536, https://openalex.org/W3114320008, https://openalex.org/W2962877489, https://openalex.org/W4319072990, https://openalex.org/W2912509860, https://openalex.org/W2888423870, https://openalex.org/W2042759796, https://openalex.org/W4224271603, https://openalex.org/W2945058180, https://openalex.org/W2181453316, https://openalex.org/W2791967143, https://openalex.org/W3121493137, https://openalex.org/W3124026623, https://openalex.org/W2949871932, https://openalex.org/W3134489802, https://openalex.org/W2021606320, https://openalex.org/W4313531838, https://openalex.org/W3121346496, https://openalex.org/W6763759333, https://openalex.org/W2070143573, https://openalex.org/W6752119246, https://openalex.org/W2898307789, https://openalex.org/W6856926427, https://openalex.org/W6857279128, https://openalex.org/W6879400957, https://openalex.org/W6861334222, https://openalex.org/W6850493425, https://openalex.org/W6861311247, https://openalex.org/W6869826785, https://openalex.org/W6879693285, https://openalex.org/W3126053622, https://openalex.org/W3121538680, https://openalex.org/W3020982786, https://openalex.org/W3022266198, https://openalex.org/W3214504061, https://openalex.org/W2284220794, https://openalex.org/W4280542850, https://openalex.org/W3081654340, https://openalex.org/W4404717063, https://openalex.org/W6708658930, https://openalex.org/W2907970702, https://openalex.org/W2990375817, https://openalex.org/W2895625351, https://openalex.org/W2092917742, https://openalex.org/W4392888347, https://openalex.org/W4291329413, https://openalex.org/W4220942674, https://openalex.org/W4387338495, https://openalex.org/W2897598090, https://openalex.org/W4388708093, https://openalex.org/W3017452399, https://openalex.org/W4401354861, https://openalex.org/W4389100928, https://openalex.org/W4390576162, https://openalex.org/W4386825957, https://openalex.org/W4307154771, https://openalex.org/W6739901393, https://openalex.org/W4387683840, https://openalex.org/W2059798300, https://openalex.org/W3121136571, https://openalex.org/W4221143046, https://openalex.org/W4387634898, https://openalex.org/W4391286169, https://openalex.org/W4381571703, https://openalex.org/W4321854470, https://openalex.org/W2803504987, https://openalex.org/W4292779060, https://openalex.org/W4385245566, https://openalex.org/W2371547131, https://openalex.org/W4391591004, https://openalex.org/W2947626232, https://openalex.org/W2736601468, https://openalex.org/W4401545735, https://openalex.org/W2248570027, https://openalex.org/W4402670431, https://openalex.org/W2948859245, https://openalex.org/W4406523286, https://openalex.org/W4387355843, https://openalex.org/W4400064538 |
| referenced_works_count | 114 |
| abstract_inverted_index.a | 4, 78, 139, 154, 165, 172, 230 |
| abstract_inverted_index.As | 20, 171 |
| abstract_inverted_index.To | 74 |
| abstract_inverted_index.as | 63, 229 |
| abstract_inverted_index.in | 7, 31, 213 |
| abstract_inverted_index.is | 81, 176 |
| abstract_inverted_index.of | 168, 210, 215, 225 |
| abstract_inverted_index.to | 52, 100, 118, 142, 157, 178, 189, 247 |
| abstract_inverted_index.The | 0, 107, 134 |
| abstract_inverted_index.and | 15, 34, 44, 56, 68, 92, 131, 150, 152, 218, 232 |
| abstract_inverted_index.for | 41, 89, 104, 235 |
| abstract_inverted_index.has | 37 |
| abstract_inverted_index.its | 187 |
| abstract_inverted_index.key | 208 |
| abstract_inverted_index.oil | 184 |
| abstract_inverted_index.the | 8, 21, 54, 69, 123, 159, 179, 199, 223, 226, 240, 248 |
| abstract_inverted_index.This | 220 |
| abstract_inverted_index.West | 180 |
| abstract_inverted_index.also | 137 |
| abstract_inverted_index.data | 113, 117, 216 |
| abstract_inverted_index.role | 6 |
| abstract_inverted_index.such | 62 |
| abstract_inverted_index.that | 83, 198 |
| abstract_inverted_index.this | 32, 174 |
| abstract_inverted_index.with | 87, 114, 244 |
| abstract_inverted_index.Texas | 181 |
| abstract_inverted_index.among | 161 |
| abstract_inverted_index.crude | 183 |
| abstract_inverted_index.green | 128 |
| abstract_inverted_index.model | 158 |
| abstract_inverted_index.novel | 79 |
| abstract_inverted_index.often | 50 |
| abstract_inverted_index.plays | 3 |
| abstract_inverted_index.shift | 71 |
| abstract_inverted_index.study | 221 |
| abstract_inverted_index.terms | 214 |
| abstract_inverted_index.these | 76 |
| abstract_inverted_index.while | 206 |
| abstract_inverted_index.world | 22 |
| abstract_inverted_index.across | 18, 239 |
| abstract_inverted_index.become | 38 |
| abstract_inverted_index.energy | 1, 12, 26, 45, 60, 105, 129, 242, 253 |
| abstract_inverted_index.global | 9, 249 |
| abstract_inverted_index.market | 2, 36, 162, 169 |
| abstract_inverted_index.method | 109, 156 |
| abstract_inverted_index.models | 49, 212 |
| abstract_inverted_index.robust | 231 |
| abstract_inverted_index.toward | 24, 72, 251 |
| abstract_inverted_index.types, | 145 |
| abstract_inverted_index.ability | 188 |
| abstract_inverted_index.address | 75 |
| abstract_inverted_index.applied | 177 |
| abstract_inverted_index.between | 125, 147 |
| abstract_inverted_index.broader | 241 |
| abstract_inverted_index.capture | 53 |
| abstract_inverted_index.complex | 33 |
| abstract_inverted_index.develop | 101 |
| abstract_inverted_index.diverse | 120 |
| abstract_inverted_index.dynamic | 35 |
| abstract_inverted_index.employs | 138 |
| abstract_inverted_index.factors | 58 |
| abstract_inverted_index.market, | 185, 243 |
| abstract_inverted_index.methods | 88 |
| abstract_inverted_index.natural | 96 |
| abstract_inverted_index.prices, | 13 |
| abstract_inverted_index.results | 196 |
| abstract_inverted_index.returns | 205 |
| abstract_inverted_index.shaping | 11 |
| abstract_inverted_index.textual | 116 |
| abstract_inverted_index.trading | 29, 102, 193, 237 |
| abstract_inverted_index.advanced | 95 |
| abstract_inverted_index.brokers. | 46 |
| abstract_inverted_index.classify | 143 |
| abstract_inverted_index.combines | 84 |
| abstract_inverted_index.critical | 40 |
| abstract_inverted_index.delivers | 202 |
| abstract_inverted_index.economic | 126 |
| abstract_inverted_index.economy, | 10 |
| abstract_inverted_index.existing | 211 |
| abstract_inverted_index.factors, | 121 |
| abstract_inverted_index.investor | 66, 132, 144 |
| abstract_inverted_index.language | 97 |
| abstract_inverted_index.learning | 86 |
| abstract_inverted_index.markets, | 61 |
| abstract_inverted_index.markets. | 106 |
| abstract_inverted_index.nations. | 19 |
| abstract_inverted_index.proposed | 82, 108, 135, 200, 227 |
| abstract_inverted_index.solution | 234 |
| abstract_inverted_index.struggle | 51 |
| abstract_inverted_index.superior | 203 |
| abstract_inverted_index.systems. | 254 |
| abstract_inverted_index.utilizes | 153 |
| abstract_inverted_index.adaptable | 233 |
| abstract_inverted_index.alongside | 94 |
| abstract_inverted_index.analyzing | 90 |
| abstract_inverted_index.dynamics. | 170 |
| abstract_inverted_index.financial | 16 |
| abstract_inverted_index.framework | 80, 136, 175, 201, 228 |
| abstract_inverted_index.highlight | 197 |
| abstract_inverted_index.including | 122 |
| abstract_inverted_index.interplay | 124 |
| abstract_inverted_index.potential | 224 |
| abstract_inverted_index.providing | 164 |
| abstract_inverted_index.relevance | 246 |
| abstract_inverted_index.showcase, | 173 |
| abstract_inverted_index.stability | 17 |
| abstract_inverted_index.technique | 141 |
| abstract_inverted_index.addressing | 207 |
| abstract_inverted_index.inflation, | 14 |
| abstract_inverted_index.integrates | 110 |
| abstract_inverted_index.investment | 204 |
| abstract_inverted_index.investors, | 42 |
| abstract_inverted_index.low-carbon | 25 |
| abstract_inverted_index.optimizing | 28, 236 |
| abstract_inverted_index.outperform | 190 |
| abstract_inverted_index.particular | 245 |
| abstract_inverted_index.processing | 98 |
| abstract_inverted_index.sentiment, | 67 |
| abstract_inverted_index.sentiment. | 133 |
| abstract_inverted_index.solutions, | 27 |
| abstract_inverted_index.strategies | 30, 103, 238 |
| abstract_inverted_index.structured | 111 |
| abstract_inverted_index.transition | 250 |
| abstract_inverted_index.variables, | 163 |
| abstract_inverted_index.Traditional | 47 |
| abstract_inverted_index.challenges, | 77 |
| abstract_inverted_index.conditions, | 65 |
| abstract_inverted_index.data-driven | 48 |
| abstract_inverted_index.fundamental | 5 |
| abstract_inverted_index.incorporate | 119 |
| abstract_inverted_index.influences, | 127 |
| abstract_inverted_index.influencing | 59 |
| abstract_inverted_index.integration | 217 |
| abstract_inverted_index.limitations | 209 |
| abstract_inverted_index.strategies. | 194 |
| abstract_inverted_index.sustainable | 252 |
| abstract_inverted_index.techniques, | 99 |
| abstract_inverted_index.time-series | 112 |
| abstract_inverted_index.traditional | 191 |
| abstract_inverted_index.transitions | 23 |
| abstract_inverted_index.underscores | 222 |
| abstract_inverted_index.Experimental | 195 |
| abstract_inverted_index.Intermediate | 182 |
| abstract_inverted_index.accelerating | 70 |
| abstract_inverted_index.disagreement | 91, 149 |
| abstract_inverted_index.flexibility. | 219 |
| abstract_inverted_index.increasingly | 39 |
| abstract_inverted_index.multifaceted | 55 |
| abstract_inverted_index.transitions, | 130 |
| abstract_inverted_index.unstructured | 115 |
| abstract_inverted_index.comprehensive | 166 |
| abstract_inverted_index.demonstrating | 186 |
| abstract_inverted_index.macroeconomic | 64 |
| abstract_inverted_index.reinforcement | 85 |
| abstract_inverted_index.understanding | 167 |
| abstract_inverted_index.connectedness, | 93 |
| abstract_inverted_index.distinguishing | 146 |
| abstract_inverted_index.interconnected | 57 |
| abstract_inverted_index.polic-ymakers, | 43 |
| abstract_inverted_index.decarbonization. | 73 |
| abstract_inverted_index.sentiment-driven | 148 |
| abstract_inverted_index.chain-of-reasoning | 140 |
| abstract_inverted_index.interrelationships | 160 |
| abstract_inverted_index.connectedness-based | 155 |
| abstract_inverted_index.cross-disagreement, | 151 |
| abstract_inverted_index.price-prediction-based | 192 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.9438699 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |