Toward Reasoning-Centric Time-Series Analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.13029
Traditional time series analysis has long relied on pattern recognition, trained on static and well-established benchmarks. However, in real-world settings -- where policies shift, human behavior adapts, and unexpected events unfold -- effective analysis must go beyond surface-level trends to uncover the actual forces driving them. The recent rise of Large Language Models (LLMs) presents new opportunities for rethinking time series analysis by integrating multimodal inputs. However, as the use of LLMs becomes popular, we must remain cautious, asking why we use LLMs and how to exploit them effectively. Most existing LLM-based methods still employ their numerical regression ability and ignore their deeper reasoning potential. This paper argues for rethinking time series with LLMs as a reasoning task that prioritizes causal structure and explainability. This shift brings time series analysis closer to human-aligned understanding, enabling transparent and context-aware insights in complex real-world environments.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2510.13029
- https://arxiv.org/pdf/2510.13029
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415274447
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415274447Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.13029Digital Object Identifier
- Title
-
Toward Reasoning-Centric Time-Series AnalysisWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-14Full publication date if available
- Authors
-
Xinlei Wang, Mingtian Tan, Jing Qiu, Junhua Zhao, Jinjin GuList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.13029Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.13029Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.13029Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415274447 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.13029 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.13029 |
| ids.openalex | https://openalex.org/W4415274447 |
| fwci | |
| type | preprint |
| title | Toward Reasoning-Centric Time-Series Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8476999998092651 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.7889000177383423 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| topics[2].id | https://openalex.org/T10906 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.7570000290870667 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | AI-based Problem Solving and Planning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2510.13029 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.13029 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.13029 |
| locations[1].id | doi:10.48550/arxiv.2510.13029 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.13029 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100722142 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8561-6511 |
| authorships[0].author.display_name | Xinlei Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Xinlei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5113266687 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mingtian Tan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tan, Mingtian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5110586052 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jing Qiu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qiu, Jing |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5065487554 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5446-2655 |
| authorships[3].author.display_name | Junhua Zhao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhao, Junhua |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5078100073 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4389-6236 |
| authorships[4].author.display_name | Jinjin Gu |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Gu, Jinjin |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.13029 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-17T00:00:00 |
| display_name | Toward Reasoning-Centric Time-Series Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8476999998092651 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.13029 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.13029 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.13029 |
| primary_location.id | pmh:oai:arXiv.org:2510.13029 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.13029 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.13029 |
| publication_date | 2025-10-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 115 |
| abstract_inverted_index.-- | 20, 31 |
| abstract_inverted_index.as | 67, 114 |
| abstract_inverted_index.by | 62 |
| abstract_inverted_index.go | 35 |
| abstract_inverted_index.in | 17, 139 |
| abstract_inverted_index.of | 49, 70 |
| abstract_inverted_index.on | 7, 11 |
| abstract_inverted_index.to | 39, 85, 131 |
| abstract_inverted_index.we | 74, 80 |
| abstract_inverted_index.The | 46 |
| abstract_inverted_index.and | 13, 27, 83, 99, 122, 136 |
| abstract_inverted_index.for | 57, 108 |
| abstract_inverted_index.has | 4 |
| abstract_inverted_index.how | 84 |
| abstract_inverted_index.new | 55 |
| abstract_inverted_index.the | 41, 68 |
| abstract_inverted_index.use | 69, 81 |
| abstract_inverted_index.why | 79 |
| abstract_inverted_index.LLMs | 71, 82, 113 |
| abstract_inverted_index.Most | 89 |
| abstract_inverted_index.This | 105, 124 |
| abstract_inverted_index.long | 5 |
| abstract_inverted_index.must | 34, 75 |
| abstract_inverted_index.rise | 48 |
| abstract_inverted_index.task | 117 |
| abstract_inverted_index.that | 118 |
| abstract_inverted_index.them | 87 |
| abstract_inverted_index.time | 1, 59, 110, 127 |
| abstract_inverted_index.with | 112 |
| abstract_inverted_index.Large | 50 |
| abstract_inverted_index.human | 24 |
| abstract_inverted_index.paper | 106 |
| abstract_inverted_index.shift | 125 |
| abstract_inverted_index.still | 93 |
| abstract_inverted_index.their | 95, 101 |
| abstract_inverted_index.them. | 45 |
| abstract_inverted_index.where | 21 |
| abstract_inverted_index.(LLMs) | 53 |
| abstract_inverted_index.Models | 52 |
| abstract_inverted_index.actual | 42 |
| abstract_inverted_index.argues | 107 |
| abstract_inverted_index.asking | 78 |
| abstract_inverted_index.beyond | 36 |
| abstract_inverted_index.brings | 126 |
| abstract_inverted_index.causal | 120 |
| abstract_inverted_index.closer | 130 |
| abstract_inverted_index.deeper | 102 |
| abstract_inverted_index.employ | 94 |
| abstract_inverted_index.events | 29 |
| abstract_inverted_index.forces | 43 |
| abstract_inverted_index.ignore | 100 |
| abstract_inverted_index.recent | 47 |
| abstract_inverted_index.relied | 6 |
| abstract_inverted_index.remain | 76 |
| abstract_inverted_index.series | 2, 60, 111, 128 |
| abstract_inverted_index.shift, | 23 |
| abstract_inverted_index.static | 12 |
| abstract_inverted_index.trends | 38 |
| abstract_inverted_index.unfold | 30 |
| abstract_inverted_index.ability | 98 |
| abstract_inverted_index.adapts, | 26 |
| abstract_inverted_index.becomes | 72 |
| abstract_inverted_index.complex | 140 |
| abstract_inverted_index.driving | 44 |
| abstract_inverted_index.exploit | 86 |
| abstract_inverted_index.inputs. | 65 |
| abstract_inverted_index.methods | 92 |
| abstract_inverted_index.pattern | 8 |
| abstract_inverted_index.trained | 10 |
| abstract_inverted_index.uncover | 40 |
| abstract_inverted_index.However, | 16, 66 |
| abstract_inverted_index.Language | 51 |
| abstract_inverted_index.analysis | 3, 33, 61, 129 |
| abstract_inverted_index.behavior | 25 |
| abstract_inverted_index.enabling | 134 |
| abstract_inverted_index.existing | 90 |
| abstract_inverted_index.insights | 138 |
| abstract_inverted_index.policies | 22 |
| abstract_inverted_index.popular, | 73 |
| abstract_inverted_index.presents | 54 |
| abstract_inverted_index.settings | 19 |
| abstract_inverted_index.LLM-based | 91 |
| abstract_inverted_index.cautious, | 77 |
| abstract_inverted_index.effective | 32 |
| abstract_inverted_index.numerical | 96 |
| abstract_inverted_index.reasoning | 103, 116 |
| abstract_inverted_index.structure | 121 |
| abstract_inverted_index.multimodal | 64 |
| abstract_inverted_index.potential. | 104 |
| abstract_inverted_index.real-world | 18, 141 |
| abstract_inverted_index.regression | 97 |
| abstract_inverted_index.rethinking | 58, 109 |
| abstract_inverted_index.unexpected | 28 |
| abstract_inverted_index.Traditional | 0 |
| abstract_inverted_index.benchmarks. | 15 |
| abstract_inverted_index.integrating | 63 |
| abstract_inverted_index.prioritizes | 119 |
| abstract_inverted_index.transparent | 135 |
| abstract_inverted_index.effectively. | 88 |
| abstract_inverted_index.recognition, | 9 |
| abstract_inverted_index.context-aware | 137 |
| abstract_inverted_index.environments. | 142 |
| abstract_inverted_index.human-aligned | 132 |
| abstract_inverted_index.opportunities | 56 |
| abstract_inverted_index.surface-level | 37 |
| abstract_inverted_index.understanding, | 133 |
| abstract_inverted_index.explainability. | 123 |
| abstract_inverted_index.well-established | 14 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |