Towards a Global Model for Diabetic Kidney Disease Screening using ATR-FTIR Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.26434/chemrxiv-2025-pksq8
Infrared (IR) spectroscopy of urine extracts coupled with Machine Learning (ML) methods has been proposed as a promising technique for Diabetic Kidney Disease (DKD) screening. However, for clinical translation, predictive models based on machine learning techniques necessitate substantial sets of samples for calibration and testing under various experimental parameters and populations, posing a critical barrier to the development of globally deployable tools. Here, we aim to assess the methodology's ability to establish DKD diagnostic models applicable across diverse populations, instruments and experimental conditions worldwide. Two datasets were compared. The Australian set included 155 DKD and 22 control samples from a 24-hour urine collection, with preconcentrated proteins measured on a Bruker spectrometer. The Spanish set, comprising 35 DKD and 26 control spot urine samples, was analyzed using a Perkin-Elmer spectrometer. Different ML methods were developed to identify DKD and microalbuminuria, aiming to compare their performance in terms of generalization and adaptation to different datasets. Models developed using Australian spectra successfully predicted Spanish samples, achieving AUROC values of 0.87 and 0.98 for DKD and microalbuminuria identification, respectively. Both values improved to 0.99 when a global model was calibrated and independently tested with a combined set integrating samples from both countries. Results evidence that the spectral markers found in the IR spectra, based on signals arising from albumin and other glycoproteins, have proven to be robust, minimizing the effects of population and instrument variability. Results exemplify the potential of developing global big-data spectroscopic datasets to facilitate the deployment of IR-based diagnostic methods in real-world settings.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.26434/chemrxiv-2025-pksq8
- https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/67c569596dde43c90845febe/original/towards-a-global-model-for-diabetic-kidney-disease-screening-using-atr-ftir.pdf
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408215678
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408215678Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26434/chemrxiv-2025-pksq8Digital Object Identifier
- Title
-
Towards a Global Model for Diabetic Kidney Disease Screening using ATR-FTIRWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-05Full publication date if available
- Authors
-
Víctor Navarro-Esteve, Ángel Sánchez‐Illana, José Pórtoles, María Marqués-Vidas, Josep Ventura-Gayete, Nuria Estañ Capell, Iris Viejo-Boyano, Francisco Valero-Mena, Antonio Sánchez, Bayden R. Wood, David Pérez-GuaitaList of authors in order
- Landing page
-
https://doi.org/10.26434/chemrxiv-2025-pksq8Publisher landing page
- PDF URL
-
https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/67c569596dde43c90845febe/original/towards-a-global-model-for-diabetic-kidney-disease-screening-using-atr-ftir.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/67c569596dde43c90845febe/original/towards-a-global-model-for-diabetic-kidney-disease-screening-using-atr-ftir.pdfDirect OA link when available
- Concepts
-
Fourier transform infrared spectroscopy, Kidney disease, Medicine, Diabetes mellitus, Internal medicine, Endocrinology, Chemical engineering, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408215678 |
|---|---|
| doi | https://doi.org/10.26434/chemrxiv-2025-pksq8 |
| ids.doi | https://doi.org/10.26434/chemrxiv-2025-pksq8 |
| ids.openalex | https://openalex.org/W4408215678 |
| fwci | 0.0 |
| type | preprint |
| title | Towards a Global Model for Diabetic Kidney Disease Screening using ATR-FTIR |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11324 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.8450999855995178 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1304 |
| topics[0].subfield.display_name | Biophysics |
| topics[0].display_name | Spectroscopy Techniques in Biomedical and Chemical Research |
| topics[1].id | https://openalex.org/T10351 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.8355000019073486 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2713 |
| topics[1].subfield.display_name | Epidemiology |
| topics[1].display_name | Liver Disease Diagnosis and Treatment |
| topics[2].id | https://openalex.org/T11396 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.7368000149726868 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3605 |
| topics[2].subfield.display_name | Health Information Management |
| topics[2].display_name | Artificial Intelligence in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C160892712 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5559009909629822 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q901559 |
| concepts[0].display_name | Fourier transform infrared spectroscopy |
| concepts[1].id | https://openalex.org/C2778653478 |
| concepts[1].level | 2 |
| concepts[1].score | 0.51735919713974 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1054718 |
| concepts[1].display_name | Kidney disease |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4940193295478821 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C555293320 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4791266620159149 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12206 |
| concepts[3].display_name | Diabetes mellitus |
| concepts[4].id | https://openalex.org/C126322002 |
| concepts[4].level | 1 |
| concepts[4].score | 0.37859103083610535 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[4].display_name | Internal medicine |
| concepts[5].id | https://openalex.org/C134018914 |
| concepts[5].level | 1 |
| concepts[5].score | 0.23620346188545227 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q162606 |
| concepts[5].display_name | Endocrinology |
| concepts[6].id | https://openalex.org/C42360764 |
| concepts[6].level | 1 |
| concepts[6].score | 0.12204232811927795 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q83588 |
| concepts[6].display_name | Chemical engineering |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.1184166669845581 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/fourier-transform-infrared-spectroscopy |
| keywords[0].score | 0.5559009909629822 |
| keywords[0].display_name | Fourier transform infrared spectroscopy |
| keywords[1].id | https://openalex.org/keywords/kidney-disease |
| keywords[1].score | 0.51735919713974 |
| keywords[1].display_name | Kidney disease |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.4940193295478821 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/diabetes-mellitus |
| keywords[3].score | 0.4791266620159149 |
| keywords[3].display_name | Diabetes mellitus |
| keywords[4].id | https://openalex.org/keywords/internal-medicine |
| keywords[4].score | 0.37859103083610535 |
| keywords[4].display_name | Internal medicine |
| keywords[5].id | https://openalex.org/keywords/endocrinology |
| keywords[5].score | 0.23620346188545227 |
| keywords[5].display_name | Endocrinology |
| keywords[6].id | https://openalex.org/keywords/chemical-engineering |
| keywords[6].score | 0.12204232811927795 |
| keywords[6].display_name | Chemical engineering |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.1184166669845581 |
| keywords[7].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.26434/chemrxiv-2025-pksq8 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/67c569596dde43c90845febe/original/towards-a-global-model-for-diabetic-kidney-disease-screening-using-atr-ftir.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.26434/chemrxiv-2025-pksq8 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5055172898 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1844-9848 |
| authorships[0].author.display_name | Víctor Navarro-Esteve |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I16097986 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Analytical Chemistry, University of Valencia |
| authorships[0].institutions[0].id | https://openalex.org/I16097986 |
| authorships[0].institutions[0].ror | https://ror.org/043nxc105 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I16097986 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | Universitat de València |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Víctor Navarro-Esteve |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Analytical Chemistry, University of Valencia |
| authorships[1].author.id | https://openalex.org/A5045674799 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7630-0614 |
| authorships[1].author.display_name | Ángel Sánchez‐Illana |
| authorships[1].countries | ES |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I16097986 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Analytical Chemistry, University of Valencia |
| authorships[1].institutions[0].id | https://openalex.org/I16097986 |
| authorships[1].institutions[0].ror | https://ror.org/043nxc105 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I16097986 |
| authorships[1].institutions[0].country_code | ES |
| authorships[1].institutions[0].display_name | Universitat de València |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ángel Sánchez-Illana |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Analytical Chemistry, University of Valencia |
| authorships[2].author.id | https://openalex.org/A5039134021 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2114-1385 |
| authorships[2].author.display_name | José Pórtoles |
| authorships[2].countries | ES |
| authorships[2].affiliations[0].raw_affiliation_string | RISCORS2040 RD24/0004/0028 |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210105637 |
| authorships[2].affiliations[1].raw_affiliation_string | University Hospital Puerta de Hierro de Majadahonda |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I63634437 |
| authorships[2].affiliations[2].raw_affiliation_string | Department of Medicine. Universidad Autónoma de Madrid |
| authorships[2].institutions[0].id | https://openalex.org/I4210105637 |
| authorships[2].institutions[0].ror | https://ror.org/01e57nb43 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210105637, https://openalex.org/I4210139293 |
| authorships[2].institutions[0].country_code | ES |
| authorships[2].institutions[0].display_name | Hospital Universitario Puerta de Hierro Majadahonda |
| authorships[2].institutions[1].id | https://openalex.org/I63634437 |
| authorships[2].institutions[1].ror | https://ror.org/01cby8j38 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I63634437 |
| authorships[2].institutions[1].country_code | ES |
| authorships[2].institutions[1].display_name | Universidad Autónoma de Madrid |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | José Pórtoles |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Medicine. Universidad Autónoma de Madrid, RISCORS2040 RD24/0004/0028, University Hospital Puerta de Hierro de Majadahonda |
| authorships[3].author.id | https://openalex.org/A5085008333 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | María Marqués-Vidas |
| authorships[3].countries | ES |
| authorships[3].affiliations[0].raw_affiliation_string | RISCORS2040 RD24/0004/0028 |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210105637 |
| authorships[3].affiliations[1].raw_affiliation_string | University Hospital Puerta de Hierro de Majadahonda |
| authorships[3].institutions[0].id | https://openalex.org/I4210105637 |
| authorships[3].institutions[0].ror | https://ror.org/01e57nb43 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210105637, https://openalex.org/I4210139293 |
| authorships[3].institutions[0].country_code | ES |
| authorships[3].institutions[0].display_name | Hospital Universitario Puerta de Hierro Majadahonda |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | María Marqués-Vidas |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | RISCORS2040 RD24/0004/0028, University Hospital Puerta de Hierro de Majadahonda |
| authorships[4].author.id | https://openalex.org/A5030019627 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Josep Ventura-Gayete |
| authorships[4].countries | ES |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210126200 |
| authorships[4].affiliations[0].raw_affiliation_string | University Hospital Doctor Peset Aleixandre |
| authorships[4].institutions[0].id | https://openalex.org/I4210126200 |
| authorships[4].institutions[0].ror | https://ror.org/03971n288 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210126200 |
| authorships[4].institutions[0].country_code | ES |
| authorships[4].institutions[0].display_name | Hospital Universitario Doctor Peset |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Josep Ventura-Gayete |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University Hospital Doctor Peset Aleixandre |
| authorships[5].author.id | https://openalex.org/A5007788397 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Nuria Estañ Capell |
| authorships[5].countries | ES |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210126200 |
| authorships[5].affiliations[0].raw_affiliation_string | University Hospital Doctor Peset Aleixandre |
| authorships[5].institutions[0].id | https://openalex.org/I4210126200 |
| authorships[5].institutions[0].ror | https://ror.org/03971n288 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210126200 |
| authorships[5].institutions[0].country_code | ES |
| authorships[5].institutions[0].display_name | Hospital Universitario Doctor Peset |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Nuria Estañ Capell |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University Hospital Doctor Peset Aleixandre |
| authorships[6].author.id | https://openalex.org/A5049170510 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2181-5068 |
| authorships[6].author.display_name | Iris Viejo-Boyano |
| authorships[6].countries | ES |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I3019010403 |
| authorships[6].affiliations[0].raw_affiliation_string | University Hospital La Fe |
| authorships[6].institutions[0].id | https://openalex.org/I3019010403 |
| authorships[6].institutions[0].ror | https://ror.org/01ar2v535 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I3019010403, https://openalex.org/I4210166036 |
| authorships[6].institutions[0].country_code | ES |
| authorships[6].institutions[0].display_name | Hospital Universitari i Politècnic La Fe |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Iris Viejo-Boyano |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | University Hospital La Fe |
| authorships[7].author.id | https://openalex.org/A5116546595 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Francisco Valero-Mena |
| authorships[7].countries | ES |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I3019010403 |
| authorships[7].affiliations[0].raw_affiliation_string | University Hospital La Fe |
| authorships[7].institutions[0].id | https://openalex.org/I3019010403 |
| authorships[7].institutions[0].ror | https://ror.org/01ar2v535 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I3019010403, https://openalex.org/I4210166036 |
| authorships[7].institutions[0].country_code | ES |
| authorships[7].institutions[0].display_name | Hospital Universitari i Politècnic La Fe |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Francisco Valero-Mena |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | University Hospital La Fe |
| authorships[8].author.id | https://openalex.org/A5043033718 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-7168-6175 |
| authorships[8].author.display_name | Antonio Sánchez |
| authorships[8].countries | ES |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210148771 |
| authorships[8].affiliations[0].raw_affiliation_string | Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I4210148771 |
| authorships[8].affiliations[1].raw_affiliation_string | Biobank, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana |
| authorships[8].institutions[0].id | https://openalex.org/I4210148771 |
| authorships[8].institutions[0].ror | https://ror.org/05n7xcf53 |
| authorships[8].institutions[0].type | facility |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210148771 |
| authorships[8].institutions[0].country_code | ES |
| authorships[8].institutions[0].display_name | Instituto de Investigación Sanitaria de Santiago |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Antonio J. Sánchez-López |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Biobank, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana |
| authorships[9].author.id | https://openalex.org/A5044253971 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-3581-447X |
| authorships[9].author.display_name | Bayden R. Wood |
| authorships[9].countries | AU |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I56590836 |
| authorships[9].affiliations[0].raw_affiliation_string | Centre for Biospectroscopy, Monash University |
| authorships[9].institutions[0].id | https://openalex.org/I56590836 |
| authorships[9].institutions[0].ror | https://ror.org/02bfwt286 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I56590836 |
| authorships[9].institutions[0].country_code | AU |
| authorships[9].institutions[0].display_name | Monash University |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Bayden R. Wood |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Centre for Biospectroscopy, Monash University |
| authorships[10].author.id | https://openalex.org/A5023855711 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-2640-2927 |
| authorships[10].author.display_name | David Pérez-Guaita |
| authorships[10].countries | ES |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I16097986 |
| authorships[10].affiliations[0].raw_affiliation_string | Department of Analytical Chemistry, University of Valencia |
| authorships[10].institutions[0].id | https://openalex.org/I16097986 |
| authorships[10].institutions[0].ror | https://ror.org/043nxc105 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I16097986 |
| authorships[10].institutions[0].country_code | ES |
| authorships[10].institutions[0].display_name | Universitat de València |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | David Pérez-Guaita |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Department of Analytical Chemistry, University of Valencia |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/67c569596dde43c90845febe/original/towards-a-global-model-for-diabetic-kidney-disease-screening-using-atr-ftir.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards a Global Model for Diabetic Kidney Disease Screening using ATR-FTIR |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11324 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.8450999855995178 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1304 |
| primary_topic.subfield.display_name | Biophysics |
| primary_topic.display_name | Spectroscopy Techniques in Biomedical and Chemical Research |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W3031052312, https://openalex.org/W4389568370, https://openalex.org/W3032375762, https://openalex.org/W1995515455, https://openalex.org/W2080531066, https://openalex.org/W3108674512, https://openalex.org/W1506200166, https://openalex.org/W1489783725 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.26434/chemrxiv-2025-pksq8 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/67c569596dde43c90845febe/original/towards-a-global-model-for-diabetic-kidney-disease-screening-using-atr-ftir.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.26434/chemrxiv-2025-pksq8 |
| primary_location.id | doi:10.26434/chemrxiv-2025-pksq8 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/67c569596dde43c90845febe/original/towards-a-global-model-for-diabetic-kidney-disease-screening-using-atr-ftir.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.26434/chemrxiv-2025-pksq8 |
| publication_date | 2025-03-05 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 16, 52, 99, 108, 126, 181, 190 |
| abstract_inverted_index.22 | 95 |
| abstract_inverted_index.26 | 118 |
| abstract_inverted_index.35 | 115 |
| abstract_inverted_index.IR | 207 |
| abstract_inverted_index.ML | 130 |
| abstract_inverted_index.as | 15 |
| abstract_inverted_index.be | 221 |
| abstract_inverted_index.in | 144, 205, 249 |
| abstract_inverted_index.of | 3, 39, 58, 146, 165, 226, 235, 245 |
| abstract_inverted_index.on | 32, 107, 210 |
| abstract_inverted_index.to | 55, 65, 70, 134, 140, 150, 178, 220, 241 |
| abstract_inverted_index.we | 63 |
| abstract_inverted_index.155 | 92 |
| abstract_inverted_index.DKD | 72, 93, 116, 136, 170 |
| abstract_inverted_index.The | 88, 111 |
| abstract_inverted_index.Two | 84 |
| abstract_inverted_index.aim | 64 |
| abstract_inverted_index.and | 43, 49, 80, 94, 117, 137, 148, 167, 171, 186, 215, 228 |
| abstract_inverted_index.for | 19, 26, 41, 169 |
| abstract_inverted_index.has | 12 |
| abstract_inverted_index.set | 90, 192 |
| abstract_inverted_index.the | 56, 67, 201, 206, 224, 233, 243 |
| abstract_inverted_index.was | 123, 184 |
| abstract_inverted_index.(IR) | 1 |
| abstract_inverted_index.(ML) | 10 |
| abstract_inverted_index.0.87 | 166 |
| abstract_inverted_index.0.98 | 168 |
| abstract_inverted_index.0.99 | 179 |
| abstract_inverted_index.Both | 175 |
| abstract_inverted_index.been | 13 |
| abstract_inverted_index.both | 196 |
| abstract_inverted_index.from | 98, 195, 213 |
| abstract_inverted_index.have | 218 |
| abstract_inverted_index.set, | 113 |
| abstract_inverted_index.sets | 38 |
| abstract_inverted_index.spot | 120 |
| abstract_inverted_index.that | 200 |
| abstract_inverted_index.were | 86, 132 |
| abstract_inverted_index.when | 180 |
| abstract_inverted_index.with | 7, 103, 189 |
| abstract_inverted_index.(DKD) | 23 |
| abstract_inverted_index.AUROC | 163 |
| abstract_inverted_index.Here, | 62 |
| abstract_inverted_index.based | 31, 209 |
| abstract_inverted_index.found | 204 |
| abstract_inverted_index.model | 183 |
| abstract_inverted_index.other | 216 |
| abstract_inverted_index.terms | 145 |
| abstract_inverted_index.their | 142 |
| abstract_inverted_index.under | 45 |
| abstract_inverted_index.urine | 4, 101, 121 |
| abstract_inverted_index.using | 125, 155 |
| abstract_inverted_index.Bruker | 109 |
| abstract_inverted_index.Kidney | 21 |
| abstract_inverted_index.Models | 153 |
| abstract_inverted_index.across | 76 |
| abstract_inverted_index.aiming | 139 |
| abstract_inverted_index.assess | 66 |
| abstract_inverted_index.global | 182, 237 |
| abstract_inverted_index.models | 30, 74 |
| abstract_inverted_index.posing | 51 |
| abstract_inverted_index.proven | 219 |
| abstract_inverted_index.tested | 188 |
| abstract_inverted_index.tools. | 61 |
| abstract_inverted_index.values | 164, 176 |
| abstract_inverted_index.24-hour | 100 |
| abstract_inverted_index.Disease | 22 |
| abstract_inverted_index.Machine | 8 |
| abstract_inverted_index.Results | 198, 231 |
| abstract_inverted_index.Spanish | 112, 160 |
| abstract_inverted_index.ability | 69 |
| abstract_inverted_index.albumin | 214 |
| abstract_inverted_index.arising | 212 |
| abstract_inverted_index.barrier | 54 |
| abstract_inverted_index.compare | 141 |
| abstract_inverted_index.control | 96, 119 |
| abstract_inverted_index.coupled | 6 |
| abstract_inverted_index.diverse | 77 |
| abstract_inverted_index.effects | 225 |
| abstract_inverted_index.machine | 33 |
| abstract_inverted_index.markers | 203 |
| abstract_inverted_index.methods | 11, 131, 248 |
| abstract_inverted_index.robust, | 222 |
| abstract_inverted_index.samples | 40, 97, 194 |
| abstract_inverted_index.signals | 211 |
| abstract_inverted_index.spectra | 157 |
| abstract_inverted_index.testing | 44 |
| abstract_inverted_index.various | 46 |
| abstract_inverted_index.Diabetic | 20 |
| abstract_inverted_index.However, | 25 |
| abstract_inverted_index.IR-based | 246 |
| abstract_inverted_index.Infrared | 0 |
| abstract_inverted_index.Learning | 9 |
| abstract_inverted_index.analyzed | 124 |
| abstract_inverted_index.big-data | 238 |
| abstract_inverted_index.clinical | 27 |
| abstract_inverted_index.combined | 191 |
| abstract_inverted_index.critical | 53 |
| abstract_inverted_index.datasets | 85, 240 |
| abstract_inverted_index.evidence | 199 |
| abstract_inverted_index.extracts | 5 |
| abstract_inverted_index.globally | 59 |
| abstract_inverted_index.identify | 135 |
| abstract_inverted_index.improved | 177 |
| abstract_inverted_index.included | 91 |
| abstract_inverted_index.learning | 34 |
| abstract_inverted_index.measured | 106 |
| abstract_inverted_index.proposed | 14 |
| abstract_inverted_index.proteins | 105 |
| abstract_inverted_index.samples, | 122, 161 |
| abstract_inverted_index.spectra, | 208 |
| abstract_inverted_index.spectral | 202 |
| abstract_inverted_index.Different | 129 |
| abstract_inverted_index.achieving | 162 |
| abstract_inverted_index.compared. | 87 |
| abstract_inverted_index.datasets. | 152 |
| abstract_inverted_index.developed | 133, 154 |
| abstract_inverted_index.different | 151 |
| abstract_inverted_index.establish | 71 |
| abstract_inverted_index.exemplify | 232 |
| abstract_inverted_index.potential | 234 |
| abstract_inverted_index.predicted | 159 |
| abstract_inverted_index.promising | 17 |
| abstract_inverted_index.settings. | 251 |
| abstract_inverted_index.technique | 18 |
| abstract_inverted_index.Australian | 89, 156 |
| abstract_inverted_index.adaptation | 149 |
| abstract_inverted_index.applicable | 75 |
| abstract_inverted_index.calibrated | 185 |
| abstract_inverted_index.comprising | 114 |
| abstract_inverted_index.conditions | 82 |
| abstract_inverted_index.countries. | 197 |
| abstract_inverted_index.deployable | 60 |
| abstract_inverted_index.deployment | 244 |
| abstract_inverted_index.developing | 236 |
| abstract_inverted_index.diagnostic | 73, 247 |
| abstract_inverted_index.facilitate | 242 |
| abstract_inverted_index.instrument | 229 |
| abstract_inverted_index.minimizing | 223 |
| abstract_inverted_index.parameters | 48 |
| abstract_inverted_index.population | 227 |
| abstract_inverted_index.predictive | 29 |
| abstract_inverted_index.real-world | 250 |
| abstract_inverted_index.screening. | 24 |
| abstract_inverted_index.techniques | 35 |
| abstract_inverted_index.worldwide. | 83 |
| abstract_inverted_index.calibration | 42 |
| abstract_inverted_index.collection, | 102 |
| abstract_inverted_index.development | 57 |
| abstract_inverted_index.instruments | 79 |
| abstract_inverted_index.integrating | 193 |
| abstract_inverted_index.necessitate | 36 |
| abstract_inverted_index.performance | 143 |
| abstract_inverted_index.substantial | 37 |
| abstract_inverted_index.Perkin-Elmer | 127 |
| abstract_inverted_index.experimental | 47, 81 |
| abstract_inverted_index.populations, | 50, 78 |
| abstract_inverted_index.spectroscopy | 2 |
| abstract_inverted_index.successfully | 158 |
| abstract_inverted_index.translation, | 28 |
| abstract_inverted_index.variability. | 230 |
| abstract_inverted_index.independently | 187 |
| abstract_inverted_index.methodology's | 68 |
| abstract_inverted_index.respectively. | 174 |
| abstract_inverted_index.spectrometer. | 110, 128 |
| abstract_inverted_index.spectroscopic | 239 |
| abstract_inverted_index.generalization | 147 |
| abstract_inverted_index.glycoproteins, | 217 |
| abstract_inverted_index.identification, | 173 |
| abstract_inverted_index.preconcentrated | 104 |
| abstract_inverted_index.microalbuminuria | 172 |
| abstract_inverted_index.microalbuminuria, | 138 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 11 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile.value | 0.04792031 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |