Towards a More Inclusive AI: Progress and Perspectives in Large Language Model Training for the Sámi Language Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.05777
Sámi, an indigenous language group comprising multiple languages, faces digital marginalization due to the limited availability of data and sophisticated language models designed for its linguistic intricacies. This work focuses on increasing technological participation for the Sámi language. We draw the attention of the ML community towards the language modeling problem of Ultra Low Resource (ULR) languages. ULR languages are those for which the amount of available textual resources is very low, and the speaker count for them is also very low. ULRLs are also not supported by mainstream Large Language Models (LLMs) like ChatGPT, due to which gathering artificial training data for them becomes even more challenging. Mainstream AI foundational model development has given less attention to this category of languages. Generally, these languages have very few speakers, making it hard to find them. However, it is important to develop foundational models for these ULR languages to promote inclusion and the tangible abilities and impact of LLMs. To this end, we have compiled the available Sámi language resources from the web to create a clean dataset for training language models. In order to study the behavior of modern LLM models with ULR languages (Sámi), we have experimented with different kinds of LLMs, mainly at the order of $\sim$ seven billion parameters. We have also explored the effect of multilingual LLM training for ULRLs. We found that the decoder-only models under a sequential multilingual training scenario perform better than joint multilingual training, whereas multilingual training with high semantic overlap, in general, performs better than training from scratch.This is the first study on the Sámi language for adapting non-statistical language models that use the latest developments in the field of natural language processing (NLP).
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.05777
- https://arxiv.org/pdf/2405.05777
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396822384
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396822384Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.05777Digital Object Identifier
- Title
-
Towards a More Inclusive AI: Progress and Perspectives in Large Language Model Training for the Sámi LanguageWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-09Full publication date if available
- Authors
-
Ronny Paul, Himanshu Buckchash, Shantipriya Parida, Dilip K. PrasadList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.05777Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.05777Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.05777Direct OA link when available
- Concepts
-
Training (meteorology), Linguistics, Computer science, Psychology, Philosophy, Geography, MeteorologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396822384 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.05777 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.05777 |
| ids.openalex | https://openalex.org/W4396822384 |
| fwci | |
| type | preprint |
| title | Towards a More Inclusive AI: Progress and Perspectives in Large Language Model Training for the Sámi Language |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9523000121116638 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777211547 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5811136960983276 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[0].display_name | Training (meteorology) |
| concepts[1].id | https://openalex.org/C41895202 |
| concepts[1].level | 1 |
| concepts[1].score | 0.44974616169929504 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[1].display_name | Linguistics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.43026870489120483 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3632943034172058 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| concepts[4].id | https://openalex.org/C138885662 |
| concepts[4].level | 0 |
| concepts[4].score | 0.08818888664245605 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[4].display_name | Philosophy |
| concepts[5].id | https://openalex.org/C205649164 |
| concepts[5].level | 0 |
| concepts[5].score | 0.07212471961975098 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[5].display_name | Geography |
| concepts[6].id | https://openalex.org/C153294291 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[6].display_name | Meteorology |
| keywords[0].id | https://openalex.org/keywords/training |
| keywords[0].score | 0.5811136960983276 |
| keywords[0].display_name | Training (meteorology) |
| keywords[1].id | https://openalex.org/keywords/linguistics |
| keywords[1].score | 0.44974616169929504 |
| keywords[1].display_name | Linguistics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.43026870489120483 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.3632943034172058 |
| keywords[3].display_name | Psychology |
| keywords[4].id | https://openalex.org/keywords/philosophy |
| keywords[4].score | 0.08818888664245605 |
| keywords[4].display_name | Philosophy |
| keywords[5].id | https://openalex.org/keywords/geography |
| keywords[5].score | 0.07212471961975098 |
| keywords[5].display_name | Geography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.05777 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.05777 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.05777 |
| locations[1].id | doi:10.48550/arxiv.2405.05777 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.05777 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5104298524 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ronny Paul |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Paul, Ronny |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5018753704 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3679-3498 |
| authorships[1].author.display_name | Himanshu Buckchash |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Buckchash, Himanshu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5015497545 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3387-6300 |
| authorships[2].author.display_name | Shantipriya Parida |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Parida, Shantipriya |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5064348917 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3693-6973 |
| authorships[3].author.display_name | Dilip K. Prasad |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Prasad, Dilip K. |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.05777 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-05-11T00:00:00 |
| display_name | Towards a More Inclusive AI: Progress and Perspectives in Large Language Model Training for the Sámi Language |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9523000121116638 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W230091440, https://openalex.org/W2390279801, https://openalex.org/W2233261550, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2810751659, https://openalex.org/W258997015, https://openalex.org/W2376932109 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.05777 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.05777 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.05777 |
| primary_location.id | pmh:oai:arXiv.org:2405.05777 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.05777 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.05777 |
| publication_date | 2024-05-09 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 174, 231 |
| abstract_inverted_index.AI | 109 |
| abstract_inverted_index.In | 181 |
| abstract_inverted_index.ML | 44 |
| abstract_inverted_index.To | 158 |
| abstract_inverted_index.We | 38, 212, 224 |
| abstract_inverted_index.an | 1 |
| abstract_inverted_index.at | 204 |
| abstract_inverted_index.by | 87 |
| abstract_inverted_index.in | 249, 275 |
| abstract_inverted_index.is | 69, 78, 137, 257 |
| abstract_inverted_index.it | 130, 136 |
| abstract_inverted_index.of | 16, 42, 51, 65, 120, 156, 187, 201, 207, 218, 278 |
| abstract_inverted_index.on | 30, 261 |
| abstract_inverted_index.to | 12, 96, 117, 132, 139, 147, 172, 183 |
| abstract_inverted_index.we | 161, 195 |
| abstract_inverted_index.LLM | 189, 220 |
| abstract_inverted_index.Low | 53 |
| abstract_inverted_index.ULR | 57, 145, 192 |
| abstract_inverted_index.and | 18, 72, 150, 154 |
| abstract_inverted_index.are | 59, 83 |
| abstract_inverted_index.due | 11, 95 |
| abstract_inverted_index.few | 127 |
| abstract_inverted_index.for | 23, 34, 61, 76, 102, 143, 177, 222, 265 |
| abstract_inverted_index.has | 113 |
| abstract_inverted_index.its | 24 |
| abstract_inverted_index.not | 85 |
| abstract_inverted_index.the | 13, 35, 40, 43, 47, 63, 73, 151, 164, 170, 185, 205, 216, 227, 258, 262, 272, 276 |
| abstract_inverted_index.use | 271 |
| abstract_inverted_index.web | 171 |
| abstract_inverted_index.This | 27 |
| abstract_inverted_index.also | 79, 84, 214 |
| abstract_inverted_index.data | 17, 101 |
| abstract_inverted_index.draw | 39 |
| abstract_inverted_index.end, | 160 |
| abstract_inverted_index.even | 105 |
| abstract_inverted_index.find | 133 |
| abstract_inverted_index.from | 169, 255 |
| abstract_inverted_index.hard | 131 |
| abstract_inverted_index.have | 125, 162, 196, 213 |
| abstract_inverted_index.high | 246 |
| abstract_inverted_index.less | 115 |
| abstract_inverted_index.like | 93 |
| abstract_inverted_index.low, | 71 |
| abstract_inverted_index.low. | 81 |
| abstract_inverted_index.more | 106 |
| abstract_inverted_index.than | 238, 253 |
| abstract_inverted_index.that | 226, 270 |
| abstract_inverted_index.them | 77, 103 |
| abstract_inverted_index.this | 118, 159 |
| abstract_inverted_index.very | 70, 80, 126 |
| abstract_inverted_index.with | 191, 198, 245 |
| abstract_inverted_index.work | 28 |
| abstract_inverted_index.(ULR) | 55 |
| abstract_inverted_index.LLMs, | 202 |
| abstract_inverted_index.LLMs. | 157 |
| abstract_inverted_index.Large | 89 |
| abstract_inverted_index.Sámi | 36, 166, 263 |
| abstract_inverted_index.ULRLs | 82 |
| abstract_inverted_index.Ultra | 52 |
| abstract_inverted_index.clean | 175 |
| abstract_inverted_index.count | 75 |
| abstract_inverted_index.faces | 8 |
| abstract_inverted_index.field | 277 |
| abstract_inverted_index.first | 259 |
| abstract_inverted_index.found | 225 |
| abstract_inverted_index.given | 114 |
| abstract_inverted_index.group | 4 |
| abstract_inverted_index.joint | 239 |
| abstract_inverted_index.kinds | 200 |
| abstract_inverted_index.model | 111 |
| abstract_inverted_index.order | 182, 206 |
| abstract_inverted_index.seven | 209 |
| abstract_inverted_index.study | 184, 260 |
| abstract_inverted_index.them. | 134 |
| abstract_inverted_index.these | 123, 144 |
| abstract_inverted_index.those | 60 |
| abstract_inverted_index.under | 230 |
| abstract_inverted_index.which | 62, 97 |
| abstract_inverted_index.$\sim$ | 208 |
| abstract_inverted_index.(LLMs) | 92 |
| abstract_inverted_index.(NLP). | 282 |
| abstract_inverted_index.Models | 91 |
| abstract_inverted_index.Sámi, | 0 |
| abstract_inverted_index.ULRLs. | 223 |
| abstract_inverted_index.amount | 64 |
| abstract_inverted_index.better | 237, 252 |
| abstract_inverted_index.create | 173 |
| abstract_inverted_index.effect | 217 |
| abstract_inverted_index.impact | 155 |
| abstract_inverted_index.latest | 273 |
| abstract_inverted_index.mainly | 203 |
| abstract_inverted_index.making | 129 |
| abstract_inverted_index.models | 21, 142, 190, 229, 269 |
| abstract_inverted_index.modern | 188 |
| abstract_inverted_index.becomes | 104 |
| abstract_inverted_index.billion | 210 |
| abstract_inverted_index.dataset | 176 |
| abstract_inverted_index.develop | 140 |
| abstract_inverted_index.digital | 9 |
| abstract_inverted_index.focuses | 29 |
| abstract_inverted_index.limited | 14 |
| abstract_inverted_index.models. | 180 |
| abstract_inverted_index.natural | 279 |
| abstract_inverted_index.perform | 236 |
| abstract_inverted_index.problem | 50 |
| abstract_inverted_index.promote | 148 |
| abstract_inverted_index.speaker | 74 |
| abstract_inverted_index.textual | 67 |
| abstract_inverted_index.towards | 46 |
| abstract_inverted_index.whereas | 242 |
| abstract_inverted_index.(Sámi), | 194 |
| abstract_inverted_index.ChatGPT, | 94 |
| abstract_inverted_index.However, | 135 |
| abstract_inverted_index.Language | 90 |
| abstract_inverted_index.Resource | 54 |
| abstract_inverted_index.adapting | 266 |
| abstract_inverted_index.behavior | 186 |
| abstract_inverted_index.category | 119 |
| abstract_inverted_index.compiled | 163 |
| abstract_inverted_index.designed | 22 |
| abstract_inverted_index.explored | 215 |
| abstract_inverted_index.general, | 250 |
| abstract_inverted_index.language | 3, 20, 48, 167, 179, 264, 268, 280 |
| abstract_inverted_index.modeling | 49 |
| abstract_inverted_index.multiple | 6 |
| abstract_inverted_index.overlap, | 248 |
| abstract_inverted_index.performs | 251 |
| abstract_inverted_index.scenario | 235 |
| abstract_inverted_index.semantic | 247 |
| abstract_inverted_index.tangible | 152 |
| abstract_inverted_index.training | 100, 178, 221, 234, 244, 254 |
| abstract_inverted_index.abilities | 153 |
| abstract_inverted_index.attention | 41, 116 |
| abstract_inverted_index.available | 66, 165 |
| abstract_inverted_index.community | 45 |
| abstract_inverted_index.different | 199 |
| abstract_inverted_index.gathering | 98 |
| abstract_inverted_index.important | 138 |
| abstract_inverted_index.inclusion | 149 |
| abstract_inverted_index.language. | 37 |
| abstract_inverted_index.languages | 58, 124, 146, 193 |
| abstract_inverted_index.resources | 68, 168 |
| abstract_inverted_index.speakers, | 128 |
| abstract_inverted_index.supported | 86 |
| abstract_inverted_index.training, | 241 |
| abstract_inverted_index.Generally, | 122 |
| abstract_inverted_index.Mainstream | 108 |
| abstract_inverted_index.artificial | 99 |
| abstract_inverted_index.comprising | 5 |
| abstract_inverted_index.increasing | 31 |
| abstract_inverted_index.indigenous | 2 |
| abstract_inverted_index.languages, | 7 |
| abstract_inverted_index.languages. | 56, 121 |
| abstract_inverted_index.linguistic | 25 |
| abstract_inverted_index.mainstream | 88 |
| abstract_inverted_index.processing | 281 |
| abstract_inverted_index.sequential | 232 |
| abstract_inverted_index.development | 112 |
| abstract_inverted_index.parameters. | 211 |
| abstract_inverted_index.availability | 15 |
| abstract_inverted_index.challenging. | 107 |
| abstract_inverted_index.decoder-only | 228 |
| abstract_inverted_index.developments | 274 |
| abstract_inverted_index.experimented | 197 |
| abstract_inverted_index.foundational | 110, 141 |
| abstract_inverted_index.intricacies. | 26 |
| abstract_inverted_index.multilingual | 219, 233, 240, 243 |
| abstract_inverted_index.scratch.This | 256 |
| abstract_inverted_index.participation | 33 |
| abstract_inverted_index.sophisticated | 19 |
| abstract_inverted_index.technological | 32 |
| abstract_inverted_index.marginalization | 10 |
| abstract_inverted_index.non-statistical | 267 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |