Towards a Simplified Estimation of Muscle Activation Pattern from MRI and EMG Using Electrical Network and Graph Theory Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.3390/s20030724
Muscle functional MRI (mfMRI) is an imaging technique that assess muscles’ activity, exploiting a shift in the T2-relaxation time between resting and active state on muscles. It is accompanied by the use of electromyography (EMG) to have a better understanding of the muscle electrophysiology; however, a technique merging MRI and EMG information has not been defined yet. In this paper, we present an anatomical and quantitative evaluation of a method our group recently introduced to quantify its validity in terms of muscle pattern estimation for four subjects during four isometric tasks. Muscle activation pattern are estimated using a resistive network to model the morphology in the MRI. An inverse problem is solved from sEMG data to assess muscle activation. The results have been validated with a comparison with physiological information and with the fitting on the electrodes space. On average, over 90% of the input sEMG information was able to be explained with the estimated muscle patterns. There is a match with anatomical information, even if a strong subjectivity is observed among subjects. With this paper we want to proof the method’s validity showing its potential in diagnostic and rehabilitation fields.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s20030724
- OA Status
- gold
- Cited By
- 8
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3004279831
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3004279831Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s20030724Digital Object Identifier
- Title
-
Towards a Simplified Estimation of Muscle Activation Pattern from MRI and EMG Using Electrical Network and Graph TheoryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-28Full publication date if available
- Authors
-
Enrico Piovanelli, Davide Piovesan, Shouhei Shirafuji, Becky Su, Natsue Yoshimura, Yousuke Ogata, Jun OtaList of authors in order
- Landing page
-
https://doi.org/10.3390/s20030724Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/s20030724Direct OA link when available
- Concepts
-
Graph theory, Graph, Computer science, Biomedical engineering, Artificial intelligence, Engineering, Mathematics, Theoretical computer science, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2023: 1, 2022: 1, 2021: 3, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3004279831 |
|---|---|
| doi | https://doi.org/10.3390/s20030724 |
| ids.doi | https://doi.org/10.3390/s20030724 |
| ids.mag | 3004279831 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/32012945 |
| ids.openalex | https://openalex.org/W3004279831 |
| fwci | 0.56374672 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000328 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Adult |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D004576 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Electromyography |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D005260 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Female |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D064368 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Healthy Volunteers |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D006801 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Humans |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D008279 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Magnetic Resonance Imaging |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D008297 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Male |
| mesh[7].qualifier_ui | Q000502 |
| mesh[7].descriptor_ui | D009119 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | physiology |
| mesh[7].descriptor_name | Muscle Contraction |
| mesh[8].qualifier_ui | Q000000981 |
| mesh[8].descriptor_ui | D018482 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | diagnostic imaging |
| mesh[8].descriptor_name | Muscle, Skeletal |
| mesh[9].qualifier_ui | Q000502 |
| mesh[9].descriptor_ui | D018482 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | physiology |
| mesh[9].descriptor_name | Muscle, Skeletal |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000328 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Adult |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D004576 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Electromyography |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D005260 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Female |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D064368 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Healthy Volunteers |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D006801 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Humans |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D008279 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Magnetic Resonance Imaging |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D008297 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Male |
| mesh[17].qualifier_ui | Q000502 |
| mesh[17].descriptor_ui | D009119 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | physiology |
| mesh[17].descriptor_name | Muscle Contraction |
| mesh[18].qualifier_ui | Q000000981 |
| mesh[18].descriptor_ui | D018482 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | diagnostic imaging |
| mesh[18].descriptor_name | Muscle, Skeletal |
| mesh[19].qualifier_ui | Q000502 |
| mesh[19].descriptor_ui | D018482 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | physiology |
| mesh[19].descriptor_name | Muscle, Skeletal |
| type | article |
| title | Towards a Simplified Estimation of Muscle Activation Pattern from MRI and EMG Using Electrical Network and Graph Theory |
| awards[0].id | https://openalex.org/G7570721832 |
| awards[0].funder_id | https://openalex.org/F4320334764 |
| awards[0].display_name | |
| awards[0].funder_award_id | 19H05730 |
| awards[0].funder_display_name | Japan Society for the Promotion of Science |
| biblio.issue | 3 |
| biblio.volume | 20 |
| biblio.last_page | 724 |
| biblio.first_page | 724 |
| topics[0].id | https://openalex.org/T10784 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9962999820709229 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Muscle activation and electromyography studies |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.991599977016449 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| topics[2].id | https://openalex.org/T10241 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9908999800682068 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Functional Brain Connectivity Studies |
| funders[0].id | https://openalex.org/F4320334764 |
| funders[0].ror | https://ror.org/00hhkn466 |
| funders[0].display_name | Japan Society for the Promotion of Science |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C88230418 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5621258020401001 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q131476 |
| concepts[0].display_name | Graph theory |
| concepts[1].id | https://openalex.org/C132525143 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5122236609458923 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[1].display_name | Graph |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.47118452191352844 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C136229726 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3554816246032715 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q327092 |
| concepts[3].display_name | Biomedical engineering |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3298667371273041 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C127413603 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2520362138748169 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[5].display_name | Engineering |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2436528205871582 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C80444323 |
| concepts[7].level | 1 |
| concepts[7].score | 0.17171373963356018 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[7].display_name | Theoretical computer science |
| concepts[8].id | https://openalex.org/C114614502 |
| concepts[8].level | 1 |
| concepts[8].score | 0.07107287645339966 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[8].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/graph-theory |
| keywords[0].score | 0.5621258020401001 |
| keywords[0].display_name | Graph theory |
| keywords[1].id | https://openalex.org/keywords/graph |
| keywords[1].score | 0.5122236609458923 |
| keywords[1].display_name | Graph |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.47118452191352844 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/biomedical-engineering |
| keywords[3].score | 0.3554816246032715 |
| keywords[3].display_name | Biomedical engineering |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3298667371273041 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/engineering |
| keywords[5].score | 0.2520362138748169 |
| keywords[5].display_name | Engineering |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.2436528205871582 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[7].score | 0.17171373963356018 |
| keywords[7].display_name | Theoretical computer science |
| keywords[8].id | https://openalex.org/keywords/combinatorics |
| keywords[8].score | 0.07107287645339966 |
| keywords[8].display_name | Combinatorics |
| language | en |
| locations[0].id | doi:10.3390/s20030724 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s20030724 |
| locations[1].id | pmid:32012945 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/32012945 |
| locations[2].id | pmh:oai:doaj.org/article:8a5e622599c34a0d9814ad44ecdfeba6 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 20, Iss 3, p 724 (2020) |
| locations[2].landing_page_url | https://doaj.org/article/8a5e622599c34a0d9814ad44ecdfeba6 |
| locations[3].id | pmh:oai:mdpi.com:/1424-8220/20/3/724/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors |
| locations[3].landing_page_url | http://dx.doi.org/10.3390/s20030724 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:7038487 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7038487 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5052694684 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Enrico Piovanelli |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I74801974 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Precision Engineering, The University of Tokyo, Hongo, Tokyo 113-8656, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I74801974 |
| authorships[0].institutions[0].ror | https://ror.org/057zh3y96 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I74801974 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | The University of Tokyo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Enrico Piovanelli |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Precision Engineering, The University of Tokyo, Hongo, Tokyo 113-8656, Japan |
| authorships[1].author.id | https://openalex.org/A5037551926 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9258-8985 |
| authorships[1].author.display_name | Davide Piovesan |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I967637 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biomedical, Industrial and Systems Engineering, Gannon University, Erie, PA 16541, USA |
| authorships[1].institutions[0].id | https://openalex.org/I967637 |
| authorships[1].institutions[0].ror | https://ror.org/02y041669 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I967637 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Gannon University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Davide Piovesan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biomedical, Industrial and Systems Engineering, Gannon University, Erie, PA 16541, USA |
| authorships[2].author.id | https://openalex.org/A5033054087 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3102-5118 |
| authorships[2].author.display_name | Shouhei Shirafuji |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I74801974 |
| authorships[2].affiliations[0].raw_affiliation_string | Research Into Artifacts Center for Engineering (RACE), School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210103779 |
| authorships[2].affiliations[1].raw_affiliation_string | Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-0031, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I4210103779 |
| authorships[2].institutions[0].ror | https://ror.org/0254bmq54 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210103779 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | National Center of Neurology and Psychiatry |
| authorships[2].institutions[1].id | https://openalex.org/I74801974 |
| authorships[2].institutions[1].ror | https://ror.org/057zh3y96 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I74801974 |
| authorships[2].institutions[1].country_code | JP |
| authorships[2].institutions[1].display_name | The University of Tokyo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shouhei Shirafuji |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-0031, Japan, Research Into Artifacts Center for Engineering (RACE), School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan |
| authorships[3].author.id | https://openalex.org/A5053450086 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Becky Su |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I74801974 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Precision Engineering, The University of Tokyo, Hongo, Tokyo 113-8656, Japan |
| authorships[3].institutions[0].id | https://openalex.org/I74801974 |
| authorships[3].institutions[0].ror | https://ror.org/057zh3y96 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I74801974 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | The University of Tokyo |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Becky Su |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Precision Engineering, The University of Tokyo, Hongo, Tokyo 113-8656, Japan |
| authorships[4].author.id | https://openalex.org/A5071286340 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7495-9113 |
| authorships[4].author.display_name | Natsue Yoshimura |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210103779 |
| authorships[4].affiliations[0].raw_affiliation_string | Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-0031, Japan |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I114531698 |
| authorships[4].affiliations[1].raw_affiliation_string | Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I4210086780 |
| authorships[4].affiliations[2].raw_affiliation_string | Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan |
| authorships[4].institutions[0].id | https://openalex.org/I4210086780 |
| authorships[4].institutions[0].ror | https://ror.org/00097mb19 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210086780 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | Japan Science and Technology Agency |
| authorships[4].institutions[1].id | https://openalex.org/I4210103779 |
| authorships[4].institutions[1].ror | https://ror.org/0254bmq54 |
| authorships[4].institutions[1].type | healthcare |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210103779 |
| authorships[4].institutions[1].country_code | JP |
| authorships[4].institutions[1].display_name | National Center of Neurology and Psychiatry |
| authorships[4].institutions[2].id | https://openalex.org/I114531698 |
| authorships[4].institutions[2].ror | https://ror.org/0112mx960 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I114531698 |
| authorships[4].institutions[2].country_code | JP |
| authorships[4].institutions[2].display_name | Tokyo Institute of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Natsue Yoshimura |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-0031, Japan, Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan |
| authorships[5].author.id | https://openalex.org/A5029889888 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4613-7435 |
| authorships[5].author.display_name | Yousuke Ogata |
| authorships[5].countries | JP |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210103779 |
| authorships[5].affiliations[0].raw_affiliation_string | Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-0031, Japan |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I114531698 |
| authorships[5].affiliations[1].raw_affiliation_string | Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan |
| authorships[5].institutions[0].id | https://openalex.org/I4210103779 |
| authorships[5].institutions[0].ror | https://ror.org/0254bmq54 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210103779 |
| authorships[5].institutions[0].country_code | JP |
| authorships[5].institutions[0].display_name | National Center of Neurology and Psychiatry |
| authorships[5].institutions[1].id | https://openalex.org/I114531698 |
| authorships[5].institutions[1].ror | https://ror.org/0112mx960 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I114531698 |
| authorships[5].institutions[1].country_code | JP |
| authorships[5].institutions[1].display_name | Tokyo Institute of Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yousuke Ogata |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-0031, Japan |
| authorships[6].author.id | https://openalex.org/A5037920030 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4738-2275 |
| authorships[6].author.display_name | Jun Ota |
| authorships[6].countries | JP |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I74801974 |
| authorships[6].affiliations[0].raw_affiliation_string | Research Into Artifacts Center for Engineering (RACE), School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan |
| authorships[6].institutions[0].id | https://openalex.org/I74801974 |
| authorships[6].institutions[0].ror | https://ror.org/057zh3y96 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I74801974 |
| authorships[6].institutions[0].country_code | JP |
| authorships[6].institutions[0].display_name | The University of Tokyo |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Jun Ota |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Research Into Artifacts Center for Engineering (RACE), School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/s20030724 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards a Simplified Estimation of Muscle Activation Pattern from MRI and EMG Using Electrical Network and Graph Theory |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10784 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9962999820709229 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Muscle activation and electromyography studies |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s20030724 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s20030724 |
| primary_location.id | doi:10.3390/s20030724 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s20030724 |
| publication_date | 2020-01-28 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2060179371, https://openalex.org/W2978713006, https://openalex.org/W2609821924, https://openalex.org/W2015449669, https://openalex.org/W1983355320, https://openalex.org/W1541915167, https://openalex.org/W2344102755, https://openalex.org/W2023652541, https://openalex.org/W1822784999, https://openalex.org/W2042279126, https://openalex.org/W2536531589, https://openalex.org/W2098315174, https://openalex.org/W1979522247, https://openalex.org/W2095513968, https://openalex.org/W2043240362, https://openalex.org/W2042861111, https://openalex.org/W1964919144, https://openalex.org/W2057928644, https://openalex.org/W2577223296, https://openalex.org/W2979786657, https://openalex.org/W2965485819, https://openalex.org/W2099540110, https://openalex.org/W78661028, https://openalex.org/W1993267444, https://openalex.org/W2135072251, https://openalex.org/W2796365873, https://openalex.org/W2956065870, https://openalex.org/W84028245, https://openalex.org/W1853105268, https://openalex.org/W2157970738, https://openalex.org/W6603420100, https://openalex.org/W2132195713, https://openalex.org/W2010350520, https://openalex.org/W2089426233, https://openalex.org/W2165453261, https://openalex.org/W2766454305, https://openalex.org/W2050690508, https://openalex.org/W2978617760 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 13, 37, 45, 68, 97, 125, 159, 166 |
| abstract_inverted_index.An | 107 |
| abstract_inverted_index.In | 57 |
| abstract_inverted_index.It | 26 |
| abstract_inverted_index.On | 138 |
| abstract_inverted_index.an | 5, 62 |
| abstract_inverted_index.be | 150 |
| abstract_inverted_index.by | 29 |
| abstract_inverted_index.if | 165 |
| abstract_inverted_index.in | 15, 78, 104, 186 |
| abstract_inverted_index.is | 4, 27, 110, 158, 169 |
| abstract_inverted_index.of | 32, 40, 67, 80, 142 |
| abstract_inverted_index.on | 24, 134 |
| abstract_inverted_index.to | 35, 74, 100, 115, 149, 178 |
| abstract_inverted_index.we | 60, 176 |
| abstract_inverted_index.90% | 141 |
| abstract_inverted_index.EMG | 50 |
| abstract_inverted_index.MRI | 2, 48 |
| abstract_inverted_index.The | 119 |
| abstract_inverted_index.and | 21, 49, 64, 130, 188 |
| abstract_inverted_index.are | 94 |
| abstract_inverted_index.for | 84 |
| abstract_inverted_index.has | 52 |
| abstract_inverted_index.its | 76, 184 |
| abstract_inverted_index.not | 53 |
| abstract_inverted_index.our | 70 |
| abstract_inverted_index.the | 16, 30, 41, 102, 105, 132, 135, 143, 153, 180 |
| abstract_inverted_index.use | 31 |
| abstract_inverted_index.was | 147 |
| abstract_inverted_index.MRI. | 106 |
| abstract_inverted_index.With | 173 |
| abstract_inverted_index.able | 148 |
| abstract_inverted_index.been | 54, 122 |
| abstract_inverted_index.data | 114 |
| abstract_inverted_index.even | 164 |
| abstract_inverted_index.four | 85, 88 |
| abstract_inverted_index.from | 112 |
| abstract_inverted_index.have | 36, 121 |
| abstract_inverted_index.over | 140 |
| abstract_inverted_index.sEMG | 113, 145 |
| abstract_inverted_index.that | 8 |
| abstract_inverted_index.this | 58, 174 |
| abstract_inverted_index.time | 18 |
| abstract_inverted_index.want | 177 |
| abstract_inverted_index.with | 124, 127, 131, 152, 161 |
| abstract_inverted_index.yet. | 56 |
| abstract_inverted_index.(EMG) | 34 |
| abstract_inverted_index.There | 157 |
| abstract_inverted_index.among | 171 |
| abstract_inverted_index.group | 71 |
| abstract_inverted_index.input | 144 |
| abstract_inverted_index.match | 160 |
| abstract_inverted_index.model | 101 |
| abstract_inverted_index.paper | 175 |
| abstract_inverted_index.proof | 179 |
| abstract_inverted_index.shift | 14 |
| abstract_inverted_index.state | 23 |
| abstract_inverted_index.terms | 79 |
| abstract_inverted_index.using | 96 |
| abstract_inverted_index.Muscle | 0, 91 |
| abstract_inverted_index.active | 22 |
| abstract_inverted_index.assess | 9, 116 |
| abstract_inverted_index.better | 38 |
| abstract_inverted_index.during | 87 |
| abstract_inverted_index.method | 69 |
| abstract_inverted_index.muscle | 42, 81, 117, 155 |
| abstract_inverted_index.paper, | 59 |
| abstract_inverted_index.solved | 111 |
| abstract_inverted_index.space. | 137 |
| abstract_inverted_index.strong | 167 |
| abstract_inverted_index.tasks. | 90 |
| abstract_inverted_index.(mfMRI) | 3 |
| abstract_inverted_index.between | 19 |
| abstract_inverted_index.defined | 55 |
| abstract_inverted_index.fields. | 190 |
| abstract_inverted_index.fitting | 133 |
| abstract_inverted_index.imaging | 6 |
| abstract_inverted_index.inverse | 108 |
| abstract_inverted_index.merging | 47 |
| abstract_inverted_index.network | 99 |
| abstract_inverted_index.pattern | 82, 93 |
| abstract_inverted_index.present | 61 |
| abstract_inverted_index.problem | 109 |
| abstract_inverted_index.resting | 20 |
| abstract_inverted_index.results | 120 |
| abstract_inverted_index.showing | 183 |
| abstract_inverted_index.average, | 139 |
| abstract_inverted_index.however, | 44 |
| abstract_inverted_index.muscles. | 25 |
| abstract_inverted_index.observed | 170 |
| abstract_inverted_index.quantify | 75 |
| abstract_inverted_index.recently | 72 |
| abstract_inverted_index.subjects | 86 |
| abstract_inverted_index.validity | 77, 182 |
| abstract_inverted_index.activity, | 11 |
| abstract_inverted_index.estimated | 95, 154 |
| abstract_inverted_index.explained | 151 |
| abstract_inverted_index.isometric | 89 |
| abstract_inverted_index.patterns. | 156 |
| abstract_inverted_index.potential | 185 |
| abstract_inverted_index.resistive | 98 |
| abstract_inverted_index.subjects. | 172 |
| abstract_inverted_index.technique | 7, 46 |
| abstract_inverted_index.validated | 123 |
| abstract_inverted_index.activation | 92 |
| abstract_inverted_index.anatomical | 63, 162 |
| abstract_inverted_index.comparison | 126 |
| abstract_inverted_index.diagnostic | 187 |
| abstract_inverted_index.electrodes | 136 |
| abstract_inverted_index.estimation | 83 |
| abstract_inverted_index.evaluation | 66 |
| abstract_inverted_index.exploiting | 12 |
| abstract_inverted_index.functional | 1 |
| abstract_inverted_index.introduced | 73 |
| abstract_inverted_index.method’s | 181 |
| abstract_inverted_index.morphology | 103 |
| abstract_inverted_index.muscles’ | 10 |
| abstract_inverted_index.accompanied | 28 |
| abstract_inverted_index.activation. | 118 |
| abstract_inverted_index.information | 51, 129, 146 |
| abstract_inverted_index.information, | 163 |
| abstract_inverted_index.quantitative | 65 |
| abstract_inverted_index.subjectivity | 168 |
| abstract_inverted_index.T2-relaxation | 17 |
| abstract_inverted_index.physiological | 128 |
| abstract_inverted_index.understanding | 39 |
| abstract_inverted_index.rehabilitation | 189 |
| abstract_inverted_index.electromyography | 33 |
| abstract_inverted_index.electrophysiology; | 43 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5052694684 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I74801974 |
| citation_normalized_percentile.value | 0.60578138 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |