Towards Active Flow Control Strategies Through Deep Reinforcement Learning Article Swipe
R. Montalà
,
Bernat Font
,
Pol Suárez
,
Jean Rabault
,
O. Lehmkuhl
,
I. Rodríguez
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.05536
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.05536
This paper presents a deep reinforcement learning (DRL) framework for active flow control (AFC) to reduce drag in aerodynamic bodies. Tested on a 3D cylinder at Re = 100, the DRL approach achieved a 9.32% drag reduction and a 78.4% decrease in lift oscillations by learning advanced actuation strategies. The methodology integrates a CFD solver with a DRL model using an in-memory database for efficient communication between
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.05536
- https://arxiv.org/pdf/2411.05536
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404389761
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404389761Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.05536Digital Object Identifier
- Title
-
Towards Active Flow Control Strategies Through Deep Reinforcement LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-08Full publication date if available
- Authors
-
R. Montalà, Bernat Font, Pol Suárez, Jean Rabault, O. Lehmkuhl, I. RodríguezList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.05536Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.05536Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.05536Direct OA link when available
- Concepts
-
Reinforcement learning, Reinforcement, Control (management), Active learning (machine learning), Computer science, Flow (mathematics), Artificial intelligence, Psychology, Social psychology, Mathematics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404389761 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.05536 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.05536 |
| ids.openalex | https://openalex.org/W4404389761 |
| fwci | |
| type | preprint |
| title | Towards Active Flow Control Strategies Through Deep Reinforcement Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12007 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9132999777793884 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Plasma and Flow Control in Aerodynamics |
| topics[1].id | https://openalex.org/T11206 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.907800018787384 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Model Reduction and Neural Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7246018648147583 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C67203356 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5332695245742798 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1321905 |
| concepts[1].display_name | Reinforcement |
| concepts[2].id | https://openalex.org/C2775924081 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4944338798522949 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[2].display_name | Control (management) |
| concepts[3].id | https://openalex.org/C77967617 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4909213185310364 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4677561 |
| concepts[3].display_name | Active learning (machine learning) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4654814600944519 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C38349280 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4235954284667969 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1434290 |
| concepts[5].display_name | Flow (mathematics) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.41693252325057983 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C15744967 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3047237694263458 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[7].display_name | Psychology |
| concepts[8].id | https://openalex.org/C77805123 |
| concepts[8].level | 1 |
| concepts[8].score | 0.11623349785804749 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[8].display_name | Social psychology |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.08336451649665833 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C2524010 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[10].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.7246018648147583 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/reinforcement |
| keywords[1].score | 0.5332695245742798 |
| keywords[1].display_name | Reinforcement |
| keywords[2].id | https://openalex.org/keywords/control |
| keywords[2].score | 0.4944338798522949 |
| keywords[2].display_name | Control (management) |
| keywords[3].id | https://openalex.org/keywords/active-learning |
| keywords[3].score | 0.4909213185310364 |
| keywords[3].display_name | Active learning (machine learning) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4654814600944519 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/flow |
| keywords[5].score | 0.4235954284667969 |
| keywords[5].display_name | Flow (mathematics) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.41693252325057983 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/psychology |
| keywords[7].score | 0.3047237694263458 |
| keywords[7].display_name | Psychology |
| keywords[8].id | https://openalex.org/keywords/social-psychology |
| keywords[8].score | 0.11623349785804749 |
| keywords[8].display_name | Social psychology |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.08336451649665833 |
| keywords[9].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.05536 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.05536 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.05536 |
| locations[1].id | doi:10.48550/arxiv.2411.05536 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.05536 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5093267250 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-7911-7102 |
| authorships[0].author.display_name | R. Montalà |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Montalà, Ricard |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5031672395 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2136-3068 |
| authorships[1].author.display_name | Bernat Font |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Font, Bernat |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5076263492 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6031-5536 |
| authorships[2].author.display_name | Pol Suárez |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Suárez, Pol |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5063892805 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7244-6592 |
| authorships[3].author.display_name | Jean Rabault |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rabault, Jean |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5051192251 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2670-1871 |
| authorships[4].author.display_name | O. Lehmkuhl |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lehmkuhl, Oriol |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5046797106 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3749-277X |
| authorships[5].author.display_name | I. Rodríguez |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Rodriguez, Ivette |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.05536 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards Active Flow Control Strategies Through Deep Reinforcement Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12007 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9132999777793884 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Plasma and Flow Control in Aerodynamics |
| related_works | https://openalex.org/W4310083477, https://openalex.org/W2328553770, https://openalex.org/W2920061524, https://openalex.org/W1977959518, https://openalex.org/W2038908348, https://openalex.org/W2107890255, https://openalex.org/W2106552856, https://openalex.org/W2145821588, https://openalex.org/W2086122291, https://openalex.org/W1987513656 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.05536 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.05536 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.05536 |
| primary_location.id | pmh:oai:arXiv.org:2411.05536 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.05536 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.05536 |
| publication_date | 2024-11-08 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 27 |
| abstract_inverted_index.a | 3, 22, 33, 38, 52, 56 |
| abstract_inverted_index.3D | 23 |
| abstract_inverted_index.Re | 26 |
| abstract_inverted_index.an | 60 |
| abstract_inverted_index.at | 25 |
| abstract_inverted_index.by | 44 |
| abstract_inverted_index.in | 17, 41 |
| abstract_inverted_index.on | 21 |
| abstract_inverted_index.to | 14 |
| abstract_inverted_index.CFD | 53 |
| abstract_inverted_index.DRL | 30, 57 |
| abstract_inverted_index.The | 49 |
| abstract_inverted_index.and | 37 |
| abstract_inverted_index.for | 9, 63 |
| abstract_inverted_index.the | 29 |
| abstract_inverted_index.100, | 28 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.deep | 4 |
| abstract_inverted_index.drag | 16, 35 |
| abstract_inverted_index.flow | 11 |
| abstract_inverted_index.lift | 42 |
| abstract_inverted_index.with | 55 |
| abstract_inverted_index.(AFC) | 13 |
| abstract_inverted_index.(DRL) | 7 |
| abstract_inverted_index.78.4% | 39 |
| abstract_inverted_index.9.32% | 34 |
| abstract_inverted_index.model | 58 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.using | 59 |
| abstract_inverted_index.Tested | 20 |
| abstract_inverted_index.active | 10 |
| abstract_inverted_index.reduce | 15 |
| abstract_inverted_index.solver | 54 |
| abstract_inverted_index.between | 66 |
| abstract_inverted_index.bodies. | 19 |
| abstract_inverted_index.control | 12 |
| abstract_inverted_index.achieved | 32 |
| abstract_inverted_index.advanced | 46 |
| abstract_inverted_index.approach | 31 |
| abstract_inverted_index.cylinder | 24 |
| abstract_inverted_index.database | 62 |
| abstract_inverted_index.decrease | 40 |
| abstract_inverted_index.learning | 6, 45 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.actuation | 47 |
| abstract_inverted_index.efficient | 64 |
| abstract_inverted_index.framework | 8 |
| abstract_inverted_index.in-memory | 61 |
| abstract_inverted_index.reduction | 36 |
| abstract_inverted_index.integrates | 51 |
| abstract_inverted_index.aerodynamic | 18 |
| abstract_inverted_index.methodology | 50 |
| abstract_inverted_index.strategies. | 48 |
| abstract_inverted_index.oscillations | 43 |
| abstract_inverted_index.communication | 65 |
| abstract_inverted_index.reinforcement | 5 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |