Towards Attribute-Entangled Controllable Text Generation: A Pilot Study of Blessing Generation Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2022.gem-1.20
Controllable Text Generation (CTG) has obtained great success due to its fine-grained generation ability obtained by focusing on multiple attributes. However, most existing CTG researches overlook how to utilize the attribute entanglement to enhance the diversity of the controlled generated texts. Facing this dilemma, we focus on a novel CTG scenario, i.e., blessing generation which is challenging because high-quality blessing texts require CTG models to comprehensively consider the entanglement between multiple attributes (e.g., objects and occasions). To promote the research on blessing generation, we present EBleT, a large-scale Entangled Blessing Text dataset containing 293K English sentences annotated with multiple attributes. Furthermore, we propose novel evaluation metrics to measure the quality of the blessing texts generated by the baseline models we designed. Our study opens a new research direction for controllable text generation and enables the development of attribute-entangled CTG models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/2022.gem-1.20
- https://aclanthology.org/2022.gem-1.20.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385573299
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385573299Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/2022.gem-1.20Digital Object Identifier
- Title
-
Towards Attribute-Entangled Controllable Text Generation: A Pilot Study of Blessing GenerationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Shulin Huang, Shirong Ma, Yinghui Li, Yangning Li, Shiyang Lin, Hai-Tao Zheng, Ying ShenList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/2022.gem-1.20Publisher landing page
- PDF URL
-
https://aclanthology.org/2022.gem-1.20.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://aclanthology.org/2022.gem-1.20.pdfDirect OA link when available
- Concepts
-
Blessing, Computer science, Dilemma, Focus (optics), Text generation, Quality (philosophy), Measure (data warehouse), Artificial intelligence, Data mining, Theology, Epistemology, Philosophy, Physics, OpticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385573299 |
|---|---|
| doi | https://doi.org/10.18653/v1/2022.gem-1.20 |
| ids.doi | https://doi.org/10.18653/v1/2022.gem-1.20 |
| ids.openalex | https://openalex.org/W4385573299 |
| fwci | 0.19579882 |
| type | article |
| title | Towards Attribute-Entangled Controllable Text Generation: A Pilot Study of Blessing Generation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 247 |
| biblio.first_page | 235 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T13629 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9560999870300293 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text Readability and Simplification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776195157 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9938697814941406 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q626510 |
| concepts[0].display_name | Blessing |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.714785099029541 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2778496695 |
| concepts[2].level | 2 |
| concepts[2].score | 0.676028847694397 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q254128 |
| concepts[2].display_name | Dilemma |
| concepts[3].id | https://openalex.org/C192209626 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5402706265449524 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[3].display_name | Focus (optics) |
| concepts[4].id | https://openalex.org/C2985684807 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5260517597198486 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1513879 |
| concepts[4].display_name | Text generation |
| concepts[5].id | https://openalex.org/C2779530757 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49416759610176086 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[5].display_name | Quality (philosophy) |
| concepts[6].id | https://openalex.org/C2780009758 |
| concepts[6].level | 2 |
| concepts[6].score | 0.436175674200058 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6804172 |
| concepts[6].display_name | Measure (data warehouse) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3321557641029358 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.22007158398628235 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C27206212 |
| concepts[9].level | 1 |
| concepts[9].score | 0.07682588696479797 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q34178 |
| concepts[9].display_name | Theology |
| concepts[10].id | https://openalex.org/C111472728 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07644027471542358 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[10].display_name | Epistemology |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0760824978351593 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.07268112897872925 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C120665830 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[13].display_name | Optics |
| keywords[0].id | https://openalex.org/keywords/blessing |
| keywords[0].score | 0.9938697814941406 |
| keywords[0].display_name | Blessing |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.714785099029541 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/dilemma |
| keywords[2].score | 0.676028847694397 |
| keywords[2].display_name | Dilemma |
| keywords[3].id | https://openalex.org/keywords/focus |
| keywords[3].score | 0.5402706265449524 |
| keywords[3].display_name | Focus (optics) |
| keywords[4].id | https://openalex.org/keywords/text-generation |
| keywords[4].score | 0.5260517597198486 |
| keywords[4].display_name | Text generation |
| keywords[5].id | https://openalex.org/keywords/quality |
| keywords[5].score | 0.49416759610176086 |
| keywords[5].display_name | Quality (philosophy) |
| keywords[6].id | https://openalex.org/keywords/measure |
| keywords[6].score | 0.436175674200058 |
| keywords[6].display_name | Measure (data warehouse) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.3321557641029358 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.22007158398628235 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/theology |
| keywords[9].score | 0.07682588696479797 |
| keywords[9].display_name | Theology |
| keywords[10].id | https://openalex.org/keywords/epistemology |
| keywords[10].score | 0.07644027471542358 |
| keywords[10].display_name | Epistemology |
| keywords[11].id | https://openalex.org/keywords/philosophy |
| keywords[11].score | 0.0760824978351593 |
| keywords[11].display_name | Philosophy |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.07268112897872925 |
| keywords[12].display_name | Physics |
| language | en |
| locations[0].id | doi:10.18653/v1/2022.gem-1.20 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://aclanthology.org/2022.gem-1.20.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM) |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/2022.gem-1.20 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5070962397 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-2181-8073 |
| authorships[0].author.display_name | Shulin Huang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[0].affiliations[0].raw_affiliation_string | Tsinghua Shenzhen International Graduate School, Tsinghua University |
| authorships[0].institutions[0].id | https://openalex.org/I99065089 |
| authorships[0].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Tsinghua University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shulin Huang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Tsinghua Shenzhen International Graduate School, Tsinghua University |
| authorships[1].author.id | https://openalex.org/A5057030499 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0035-9078 |
| authorships[1].author.display_name | Shirong Ma |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[1].affiliations[0].raw_affiliation_string | Tsinghua Shenzhen International Graduate School, Tsinghua University |
| authorships[1].institutions[0].id | https://openalex.org/I99065089 |
| authorships[1].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Tsinghua University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shirong Ma |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Tsinghua Shenzhen International Graduate School, Tsinghua University |
| authorships[2].author.id | https://openalex.org/A5100655630 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7571-6722 |
| authorships[2].author.display_name | Yinghui Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yinghui Li |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5061585074 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1991-6698 |
| authorships[3].author.display_name | Yangning Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[3].affiliations[0].raw_affiliation_string | Tsinghua Shenzhen International Graduate School, Tsinghua University |
| authorships[3].institutions[0].id | https://openalex.org/I99065089 |
| authorships[3].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Tsinghua University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li Yangning |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Tsinghua Shenzhen International Graduate School, Tsinghua University |
| authorships[4].author.id | https://openalex.org/A5047900689 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1498-4226 |
| authorships[4].author.display_name | Shiyang Lin |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].raw_affiliation_string | School of Intelligent Systems Engineering, Sun-Yat Sen University |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I99065089 |
| authorships[4].affiliations[1].raw_affiliation_string | Tsinghua Shenzhen International Graduate School, Tsinghua University |
| authorships[4].institutions[0].id | https://openalex.org/I99065089 |
| authorships[4].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Tsinghua University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shiyang Lin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Intelligent Systems Engineering, Sun-Yat Sen University, Tsinghua Shenzhen International Graduate School, Tsinghua University |
| authorships[5].author.id | https://openalex.org/A5022672030 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5128-5649 |
| authorships[5].author.display_name | Hai-Tao Zheng |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[5].affiliations[0].raw_affiliation_string | Tsinghua Shenzhen International Graduate School, Tsinghua University |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I4210136793 |
| authorships[5].affiliations[1].raw_affiliation_string | Peng Cheng Laboratory |
| authorships[5].institutions[0].id | https://openalex.org/I4210136793 |
| authorships[5].institutions[0].ror | https://ror.org/03qdqbt06 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210136793 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Peng Cheng Laboratory |
| authorships[5].institutions[1].id | https://openalex.org/I99065089 |
| authorships[5].institutions[1].ror | https://ror.org/03cve4549 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I99065089 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Tsinghua University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Haitao Zheng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Peng Cheng Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University |
| authorships[6].author.id | https://openalex.org/A5074799043 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3220-904X |
| authorships[6].author.display_name | Ying Shen |
| authorships[6].affiliations[0].raw_affiliation_string | School of Intelligent Systems Engineering, Sun-Yat Sen University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Ying Shen |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Intelligent Systems Engineering, Sun-Yat Sen University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aclanthology.org/2022.gem-1.20.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards Attribute-Entangled Controllable Text Generation: A Pilot Study of Blessing Generation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2797356264, https://openalex.org/W2505713583, https://openalex.org/W4241676634, https://openalex.org/W1568884581, https://openalex.org/W2973046398, https://openalex.org/W1554802715, https://openalex.org/W1573073638, https://openalex.org/W2499218076, https://openalex.org/W2142177772, https://openalex.org/W4385573299 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18653/v1/2022.gem-1.20 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://aclanthology.org/2022.gem-1.20.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM) |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/2022.gem-1.20 |
| primary_location.id | doi:10.18653/v1/2022.gem-1.20 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://aclanthology.org/2022.gem-1.20.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM) |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/2022.gem-1.20 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W658020064, https://openalex.org/W2532931541, https://openalex.org/W2164777277, https://openalex.org/W3175382454, https://openalex.org/W2964321064, https://openalex.org/W3212972574, https://openalex.org/W4288089799, https://openalex.org/W4294170691, https://openalex.org/W2197590357, https://openalex.org/W3119469378, https://openalex.org/W2963104691, https://openalex.org/W1975879668, https://openalex.org/W2996774440, https://openalex.org/W3035475181, https://openalex.org/W2963825865, https://openalex.org/W3098495697, https://openalex.org/W3100714086, https://openalex.org/W3114369693, https://openalex.org/W2466175319, https://openalex.org/W4226031686, https://openalex.org/W2998453866, https://openalex.org/W2949555952, https://openalex.org/W3118781290, https://openalex.org/W2188365844, https://openalex.org/W2973049837, https://openalex.org/W2963206148, https://openalex.org/W2608438166, https://openalex.org/W2986893290, https://openalex.org/W3117704329, https://openalex.org/W4299463631, https://openalex.org/W2953147883 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 47, 86, 124 |
| abstract_inverted_index.To | 76 |
| abstract_inverted_index.by | 15, 115 |
| abstract_inverted_index.is | 55 |
| abstract_inverted_index.of | 36, 110, 136 |
| abstract_inverted_index.on | 17, 46, 80 |
| abstract_inverted_index.to | 9, 27, 32, 64, 106 |
| abstract_inverted_index.we | 44, 83, 101, 119 |
| abstract_inverted_index.CTG | 23, 49, 62, 138 |
| abstract_inverted_index.Our | 121 |
| abstract_inverted_index.and | 74, 132 |
| abstract_inverted_index.due | 8 |
| abstract_inverted_index.for | 128 |
| abstract_inverted_index.has | 4 |
| abstract_inverted_index.how | 26 |
| abstract_inverted_index.its | 10 |
| abstract_inverted_index.new | 125 |
| abstract_inverted_index.the | 29, 34, 37, 67, 78, 108, 111, 116, 134 |
| abstract_inverted_index.293K | 93 |
| abstract_inverted_index.Text | 1, 90 |
| abstract_inverted_index.most | 21 |
| abstract_inverted_index.text | 130 |
| abstract_inverted_index.this | 42 |
| abstract_inverted_index.with | 97 |
| abstract_inverted_index.(CTG) | 3 |
| abstract_inverted_index.focus | 45 |
| abstract_inverted_index.great | 6 |
| abstract_inverted_index.i.e., | 51 |
| abstract_inverted_index.novel | 48, 103 |
| abstract_inverted_index.opens | 123 |
| abstract_inverted_index.study | 122 |
| abstract_inverted_index.texts | 60, 113 |
| abstract_inverted_index.which | 54 |
| abstract_inverted_index.(e.g., | 72 |
| abstract_inverted_index.EBleT, | 85 |
| abstract_inverted_index.Facing | 41 |
| abstract_inverted_index.models | 63, 118 |
| abstract_inverted_index.texts. | 40 |
| abstract_inverted_index.English | 94 |
| abstract_inverted_index.ability | 13 |
| abstract_inverted_index.because | 57 |
| abstract_inverted_index.between | 69 |
| abstract_inverted_index.dataset | 91 |
| abstract_inverted_index.enables | 133 |
| abstract_inverted_index.enhance | 33 |
| abstract_inverted_index.measure | 107 |
| abstract_inverted_index.metrics | 105 |
| abstract_inverted_index.models. | 139 |
| abstract_inverted_index.objects | 73 |
| abstract_inverted_index.present | 84 |
| abstract_inverted_index.promote | 77 |
| abstract_inverted_index.propose | 102 |
| abstract_inverted_index.quality | 109 |
| abstract_inverted_index.require | 61 |
| abstract_inverted_index.success | 7 |
| abstract_inverted_index.utilize | 28 |
| abstract_inverted_index.Blessing | 89 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.baseline | 117 |
| abstract_inverted_index.blessing | 52, 59, 81, 112 |
| abstract_inverted_index.consider | 66 |
| abstract_inverted_index.dilemma, | 43 |
| abstract_inverted_index.existing | 22 |
| abstract_inverted_index.focusing | 16 |
| abstract_inverted_index.multiple | 18, 70, 98 |
| abstract_inverted_index.obtained | 5, 14 |
| abstract_inverted_index.overlook | 25 |
| abstract_inverted_index.research | 79, 126 |
| abstract_inverted_index.Entangled | 88 |
| abstract_inverted_index.annotated | 96 |
| abstract_inverted_index.attribute | 30 |
| abstract_inverted_index.designed. | 120 |
| abstract_inverted_index.direction | 127 |
| abstract_inverted_index.diversity | 35 |
| abstract_inverted_index.generated | 39, 114 |
| abstract_inverted_index.scenario, | 50 |
| abstract_inverted_index.sentences | 95 |
| abstract_inverted_index.Generation | 2 |
| abstract_inverted_index.attributes | 71 |
| abstract_inverted_index.containing | 92 |
| abstract_inverted_index.controlled | 38 |
| abstract_inverted_index.evaluation | 104 |
| abstract_inverted_index.generation | 12, 53, 131 |
| abstract_inverted_index.researches | 24 |
| abstract_inverted_index.attributes. | 19, 99 |
| abstract_inverted_index.challenging | 56 |
| abstract_inverted_index.development | 135 |
| abstract_inverted_index.generation, | 82 |
| abstract_inverted_index.large-scale | 87 |
| abstract_inverted_index.occasions). | 75 |
| abstract_inverted_index.Controllable | 0 |
| abstract_inverted_index.Furthermore, | 100 |
| abstract_inverted_index.controllable | 129 |
| abstract_inverted_index.entanglement | 31, 68 |
| abstract_inverted_index.fine-grained | 11 |
| abstract_inverted_index.high-quality | 58 |
| abstract_inverted_index.comprehensively | 65 |
| abstract_inverted_index.attribute-entangled | 137 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.58216852 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |