Towards Automated Model Design on Recommender Systems Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1145/3706124
The increasing popularity of deep learning models has created new opportunities for developing artificial intelligence–based recommender systems. Designing recommender systems using deep neural networks (DNNs) requires careful architecture design, and further optimization demands extensive co-design efforts on jointly optimizing model architecture and hardware. Design automation, such as Automated Machine Learning (AutoML), is necessary to fully exploit the potential of recommender model design, including model choices and model–hardware co-design strategies. We introduce a novel paradigm that utilizes weight sharing to explore abundant solution spaces. Our paradigm creates a large supernet to search for optimal architectures and co-design strategies to address the challenges of data multimodality and heterogeneity in the recommendation domain. From a model perspective, the supernet includes a variety of operators, dense connectivity, and dimension search options. From a co-design perspective, it encompasses versatile Processing-In-Memory (PIM) configurations to produce hardware-efficient models. Our solution space’s scale, heterogeneity, and complexity pose several challenges, which we address by proposing various techniques for training and evaluating the supernet. Our crafted models show promising results on three Click-Through Rate (CTR) prediction benchmarks, outperforming both manually designed and AutoML-crafted models with state-of-the-art performance when focusing solely on architecture search. From a co-design perspective, we achieve 2× floating-point operations efficiency, 1.8× energy efficiency, and 1.5× performance improvements in recommender models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3706124
- https://dl.acm.org/doi/pdf/10.1145/3706124
- OA Status
- hybrid
- Cited By
- 1
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405195359
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405195359Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3706124Digital Object Identifier
- Title
-
Towards Automated Model Design on Recommender SystemsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-09Full publication date if available
- Authors
-
Tunhou Zhang, Dehua Cheng, Yuchen He, Zhengxing Chen, Xiaoliang Dai, Liang Xiong, Yudong Liu, Feng Cheng, Yufan Cao, Feng Yan, Hai Li, Yiran Chen, Wei WenList of authors in order
- Landing page
-
https://doi.org/10.1145/3706124Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3706124Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3706124Direct OA link when available
- Concepts
-
Computer science, Recommender system, Exploit, Artificial intelligence, Machine learning, Popularity, Deep learning, Automation, Architecture, Data science, Social psychology, Mechanical engineering, Art, Visual arts, Engineering, Computer security, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405195359 |
|---|---|
| doi | https://doi.org/10.1145/3706124 |
| ids.doi | https://doi.org/10.1145/3706124 |
| ids.openalex | https://openalex.org/W4405195359 |
| fwci | 0.36916847 |
| type | article |
| title | Towards Automated Model Design on Recommender Systems |
| biblio.issue | 3 |
| biblio.volume | 3 |
| biblio.last_page | 23 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T12808 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Ferroelectric and Negative Capacitance Devices |
| topics[1].id | https://openalex.org/T11948 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9979000091552734 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Machine Learning in Materials Science |
| topics[2].id | https://openalex.org/T11273 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9975000023841858 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Graph Neural Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8180642127990723 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C557471498 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7027273178100586 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q554950 |
| concepts[1].display_name | Recommender system |
| concepts[2].id | https://openalex.org/C165696696 |
| concepts[2].level | 2 |
| concepts[2].score | 0.629037618637085 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[2].display_name | Exploit |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5633913278579712 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5046941041946411 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C2780586970 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4657173156738281 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1357284 |
| concepts[5].display_name | Popularity |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45336583256721497 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C115901376 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45098787546157837 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q184199 |
| concepts[7].display_name | Automation |
| concepts[8].id | https://openalex.org/C123657996 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44585514068603516 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12271 |
| concepts[8].display_name | Architecture |
| concepts[9].id | https://openalex.org/C2522767166 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3432909846305847 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[9].display_name | Data science |
| concepts[10].id | https://openalex.org/C77805123 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[10].display_name | Social psychology |
| concepts[11].id | https://openalex.org/C78519656 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[11].display_name | Mechanical engineering |
| concepts[12].id | https://openalex.org/C142362112 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[12].display_name | Art |
| concepts[13].id | https://openalex.org/C153349607 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[13].display_name | Visual arts |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C38652104 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[15].display_name | Computer security |
| concepts[16].id | https://openalex.org/C15744967 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[16].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8180642127990723 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/recommender-system |
| keywords[1].score | 0.7027273178100586 |
| keywords[1].display_name | Recommender system |
| keywords[2].id | https://openalex.org/keywords/exploit |
| keywords[2].score | 0.629037618637085 |
| keywords[2].display_name | Exploit |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5633913278579712 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5046941041946411 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/popularity |
| keywords[5].score | 0.4657173156738281 |
| keywords[5].display_name | Popularity |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.45336583256721497 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/automation |
| keywords[7].score | 0.45098787546157837 |
| keywords[7].display_name | Automation |
| keywords[8].id | https://openalex.org/keywords/architecture |
| keywords[8].score | 0.44585514068603516 |
| keywords[8].display_name | Architecture |
| keywords[9].id | https://openalex.org/keywords/data-science |
| keywords[9].score | 0.3432909846305847 |
| keywords[9].display_name | Data science |
| language | en |
| locations[0].id | doi:10.1145/3706124 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387284325 |
| locations[0].source.issn | 2770-6699 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2770-6699 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | ACM Transactions on Recommender Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_name | Association for Computing Machinery |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_lineage_names | Association for Computing Machinery |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3706124 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ACM Transactions on Recommender Systems |
| locations[0].landing_page_url | https://doi.org/10.1145/3706124 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5052236334 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9590-9433 |
| authorships[0].author.display_name | Tunhou Zhang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[0].affiliations[0].raw_affiliation_string | Duke University, Durham, United States |
| authorships[0].institutions[0].id | https://openalex.org/I170897317 |
| authorships[0].institutions[0].ror | https://ror.org/00py81415 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Duke University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tunhou Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Duke University, Durham, United States |
| authorships[1].author.id | https://openalex.org/A5085968832 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6177-9834 |
| authorships[1].author.display_name | Dehua Cheng |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210114444 |
| authorships[1].affiliations[0].raw_affiliation_string | Meta Platforms Inc, Menlo Park, United States |
| authorships[1].institutions[0].id | https://openalex.org/I4210114444 |
| authorships[1].institutions[0].ror | https://ror.org/01zbnvs85 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210114444 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Meta (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dehua Cheng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Meta Platforms Inc, Menlo Park, United States |
| authorships[2].author.id | https://openalex.org/A5020971330 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7447-6552 |
| authorships[2].author.display_name | Yuchen He |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210114444 |
| authorships[2].affiliations[0].raw_affiliation_string | Meta Platforms Inc, Menlo Park, United States |
| authorships[2].institutions[0].id | https://openalex.org/I4210114444 |
| authorships[2].institutions[0].ror | https://ror.org/01zbnvs85 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210114444 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Meta (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuchen He |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Meta Platforms Inc, Menlo Park, United States |
| authorships[3].author.id | https://openalex.org/A5002013172 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5030-3005 |
| authorships[3].author.display_name | Zhengxing Chen |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210114444 |
| authorships[3].affiliations[0].raw_affiliation_string | Meta Platforms Inc, Menlo Park, United States |
| authorships[3].institutions[0].id | https://openalex.org/I4210114444 |
| authorships[3].institutions[0].ror | https://ror.org/01zbnvs85 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210114444 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Meta (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhengxing Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Meta Platforms Inc, Menlo Park, United States |
| authorships[4].author.id | https://openalex.org/A5080137972 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3098-2714 |
| authorships[4].author.display_name | Xiaoliang Dai |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210114444 |
| authorships[4].affiliations[0].raw_affiliation_string | Meta Platforms Inc, Menlo Park, United States |
| authorships[4].institutions[0].id | https://openalex.org/I4210114444 |
| authorships[4].institutions[0].ror | https://ror.org/01zbnvs85 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210114444 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Meta (United States) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xiaoliang Dai |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Meta Platforms Inc, Menlo Park, United States |
| authorships[5].author.id | https://openalex.org/A5023197124 |
| authorships[5].author.orcid | https://orcid.org/0009-0006-6221-6490 |
| authorships[5].author.display_name | Liang Xiong |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210114444 |
| authorships[5].affiliations[0].raw_affiliation_string | Meta Platforms Inc, Menlo Park, United States |
| authorships[5].institutions[0].id | https://openalex.org/I4210114444 |
| authorships[5].institutions[0].ror | https://ror.org/01zbnvs85 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210114444 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Meta (United States) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Liang Xiong |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Meta Platforms Inc, Menlo Park, United States |
| authorships[6].author.id | https://openalex.org/A5085692915 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Yudong Liu |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[6].affiliations[0].raw_affiliation_string | Duke University, Durham, United States |
| authorships[6].institutions[0].id | https://openalex.org/I170897317 |
| authorships[6].institutions[0].ror | https://ror.org/00py81415 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Duke University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yudong Liu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Duke University, Durham, United States |
| authorships[7].author.id | https://openalex.org/A5000945196 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-5936-0030 |
| authorships[7].author.display_name | Feng Cheng |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[7].affiliations[0].raw_affiliation_string | Duke University, Durham, United States |
| authorships[7].institutions[0].id | https://openalex.org/I170897317 |
| authorships[7].institutions[0].ror | https://ror.org/00py81415 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Duke University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Feng Cheng |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Duke University, Durham, United States |
| authorships[8].author.id | https://openalex.org/A5101262144 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Yufan Cao |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[8].affiliations[0].raw_affiliation_string | Duke University, Durham, United States |
| authorships[8].institutions[0].id | https://openalex.org/I170897317 |
| authorships[8].institutions[0].ror | https://ror.org/00py81415 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Duke University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Yufan Cao |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Duke University, Durham, United States |
| authorships[9].author.id | https://openalex.org/A5100381152 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-9840-7754 |
| authorships[9].author.display_name | Feng Yan |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I44461941 |
| authorships[9].affiliations[0].raw_affiliation_string | University of Houston, Houston, United States |
| authorships[9].institutions[0].id | https://openalex.org/I44461941 |
| authorships[9].institutions[0].ror | https://ror.org/048sx0r50 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I44461941 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | University of Houston |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Feng Yan |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | University of Houston, Houston, United States |
| authorships[10].author.id | https://openalex.org/A5100429403 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-3228-6544 |
| authorships[10].author.display_name | Hai Li |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[10].affiliations[0].raw_affiliation_string | Duke University, Durham, United States |
| authorships[10].institutions[0].id | https://openalex.org/I170897317 |
| authorships[10].institutions[0].ror | https://ror.org/00py81415 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | Duke University |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Hai Li |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Duke University, Durham, United States |
| authorships[11].author.id | https://openalex.org/A5058073627 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-1486-8412 |
| authorships[11].author.display_name | Yiran Chen |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[11].affiliations[0].raw_affiliation_string | Duke University, Durham, United States |
| authorships[11].institutions[0].id | https://openalex.org/I170897317 |
| authorships[11].institutions[0].ror | https://ror.org/00py81415 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | Duke University |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Yiran Chen |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Duke University, Durham, United States |
| authorships[12].author.id | https://openalex.org/A5103026655 |
| authorships[12].author.orcid | https://orcid.org/0000-0003-0027-4821 |
| authorships[12].author.display_name | Wei Wen |
| authorships[12].countries | US |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I4210114444 |
| authorships[12].affiliations[0].raw_affiliation_string | Meta Platforms Inc, Menlo Park, United States |
| authorships[12].institutions[0].id | https://openalex.org/I4210114444 |
| authorships[12].institutions[0].ror | https://ror.org/01zbnvs85 |
| authorships[12].institutions[0].type | company |
| authorships[12].institutions[0].lineage | https://openalex.org/I4210114444 |
| authorships[12].institutions[0].country_code | US |
| authorships[12].institutions[0].display_name | Meta (United States) |
| authorships[12].author_position | last |
| authorships[12].raw_author_name | Wei Wen |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Meta Platforms Inc, Menlo Park, United States |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3706124 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards Automated Model Design on Recommender Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12808 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Ferroelectric and Negative Capacitance Devices |
| related_works | https://openalex.org/W2368605798, https://openalex.org/W17155033, https://openalex.org/W2518037665, https://openalex.org/W2348524959, https://openalex.org/W2477036161, https://openalex.org/W3207760230, https://openalex.org/W2368049389, https://openalex.org/W1496222301, https://openalex.org/W2384861574, https://openalex.org/W4294565801 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3706124 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387284325 |
| best_oa_location.source.issn | 2770-6699 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2770-6699 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | ACM Transactions on Recommender Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_name | Association for Computing Machinery |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_lineage_names | Association for Computing Machinery |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3706124 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ACM Transactions on Recommender Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3706124 |
| primary_location.id | doi:10.1145/3706124 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387284325 |
| primary_location.source.issn | 2770-6699 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2770-6699 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | ACM Transactions on Recommender Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_name | Association for Computing Machinery |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_lineage_names | Association for Computing Machinery |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3706124 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ACM Transactions on Recommender Systems |
| primary_location.landing_page_url | https://doi.org/10.1145/3706124 |
| publication_date | 2024-12-09 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2969797940, https://openalex.org/W2156160882, https://openalex.org/W2475334473, https://openalex.org/W2512971201, https://openalex.org/W3117684406, https://openalex.org/W3094502228, https://openalex.org/W2805003733, https://openalex.org/W3214158304, https://openalex.org/W6784326479, https://openalex.org/W2604662567, https://openalex.org/W2076618162, https://openalex.org/W2575403103, https://openalex.org/W3210675823, https://openalex.org/W2793768763, https://openalex.org/W2972830778, https://openalex.org/W6752515464, https://openalex.org/W2518108298, https://openalex.org/W2947737663, https://openalex.org/W2965658867, https://openalex.org/W2002834872, https://openalex.org/W2090883204, https://openalex.org/W2517540742, https://openalex.org/W3041360407, https://openalex.org/W2898085636, https://openalex.org/W4361857408, https://openalex.org/W6739901393, https://openalex.org/W3029385331, https://openalex.org/W3093945404, https://openalex.org/W4200404159, https://openalex.org/W3133226988, https://openalex.org/W3094801149, https://openalex.org/W4313532727, https://openalex.org/W4226070519, https://openalex.org/W4320908195, https://openalex.org/W2723293840, https://openalex.org/W2964081807, https://openalex.org/W2964182926, https://openalex.org/W3101704389, https://openalex.org/W2725159389, https://openalex.org/W3153687269, https://openalex.org/W2994850640, https://openalex.org/W3105949871, https://openalex.org/W3104030692, https://openalex.org/W3035400692, https://openalex.org/W2244405900, https://openalex.org/W3104506006, https://openalex.org/W3083443371, https://openalex.org/W3109946440 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 71, 86, 111, 117, 128, 194 |
| abstract_inverted_index.We | 69 |
| abstract_inverted_index.as | 46 |
| abstract_inverted_index.by | 154 |
| abstract_inverted_index.in | 106, 210 |
| abstract_inverted_index.is | 51 |
| abstract_inverted_index.it | 131 |
| abstract_inverted_index.of | 3, 58, 101, 119 |
| abstract_inverted_index.on | 36, 170, 190 |
| abstract_inverted_index.to | 53, 78, 89, 97, 137 |
| abstract_inverted_index.we | 152, 197 |
| abstract_inverted_index.2× | 199 |
| abstract_inverted_index.Our | 83, 141, 164 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 29, 41, 65, 94, 104, 123, 146, 160, 181, 206 |
| abstract_inverted_index.for | 11, 91, 158 |
| abstract_inverted_index.has | 7 |
| abstract_inverted_index.new | 9 |
| abstract_inverted_index.the | 56, 99, 107, 114, 162 |
| abstract_inverted_index.From | 110, 127, 193 |
| abstract_inverted_index.Rate | 173 |
| abstract_inverted_index.both | 178 |
| abstract_inverted_index.data | 102 |
| abstract_inverted_index.deep | 4, 21 |
| abstract_inverted_index.pose | 148 |
| abstract_inverted_index.show | 167 |
| abstract_inverted_index.such | 45 |
| abstract_inverted_index.that | 74 |
| abstract_inverted_index.when | 187 |
| abstract_inverted_index.with | 184 |
| abstract_inverted_index.(CTR) | 174 |
| abstract_inverted_index.(PIM) | 135 |
| abstract_inverted_index.1.5× | 207 |
| abstract_inverted_index.1.8× | 203 |
| abstract_inverted_index.dense | 121 |
| abstract_inverted_index.fully | 54 |
| abstract_inverted_index.large | 87 |
| abstract_inverted_index.model | 39, 60, 63, 112 |
| abstract_inverted_index.novel | 72 |
| abstract_inverted_index.three | 171 |
| abstract_inverted_index.using | 20 |
| abstract_inverted_index.which | 151 |
| abstract_inverted_index.(DNNs) | 24 |
| abstract_inverted_index.Design | 43 |
| abstract_inverted_index.energy | 204 |
| abstract_inverted_index.models | 6, 166, 183 |
| abstract_inverted_index.neural | 22 |
| abstract_inverted_index.scale, | 144 |
| abstract_inverted_index.search | 90, 125 |
| abstract_inverted_index.solely | 189 |
| abstract_inverted_index.weight | 76 |
| abstract_inverted_index.Machine | 48 |
| abstract_inverted_index.achieve | 198 |
| abstract_inverted_index.address | 98, 153 |
| abstract_inverted_index.careful | 26 |
| abstract_inverted_index.choices | 64 |
| abstract_inverted_index.crafted | 165 |
| abstract_inverted_index.created | 8 |
| abstract_inverted_index.creates | 85 |
| abstract_inverted_index.demands | 32 |
| abstract_inverted_index.design, | 28, 61 |
| abstract_inverted_index.domain. | 109 |
| abstract_inverted_index.efforts | 35 |
| abstract_inverted_index.exploit | 55 |
| abstract_inverted_index.explore | 79 |
| abstract_inverted_index.further | 30 |
| abstract_inverted_index.jointly | 37 |
| abstract_inverted_index.models. | 140, 212 |
| abstract_inverted_index.optimal | 92 |
| abstract_inverted_index.produce | 138 |
| abstract_inverted_index.results | 169 |
| abstract_inverted_index.search. | 192 |
| abstract_inverted_index.several | 149 |
| abstract_inverted_index.sharing | 77 |
| abstract_inverted_index.spaces. | 82 |
| abstract_inverted_index.systems | 19 |
| abstract_inverted_index.variety | 118 |
| abstract_inverted_index.various | 156 |
| abstract_inverted_index.Learning | 49 |
| abstract_inverted_index.abundant | 80 |
| abstract_inverted_index.designed | 180 |
| abstract_inverted_index.focusing | 188 |
| abstract_inverted_index.includes | 116 |
| abstract_inverted_index.learning | 5 |
| abstract_inverted_index.manually | 179 |
| abstract_inverted_index.networks | 23 |
| abstract_inverted_index.options. | 126 |
| abstract_inverted_index.paradigm | 73, 84 |
| abstract_inverted_index.requires | 25 |
| abstract_inverted_index.solution | 81, 142 |
| abstract_inverted_index.supernet | 88, 115 |
| abstract_inverted_index.systems. | 16 |
| abstract_inverted_index.training | 159 |
| abstract_inverted_index.utilizes | 75 |
| abstract_inverted_index.(AutoML), | 50 |
| abstract_inverted_index.Automated | 47 |
| abstract_inverted_index.Designing | 17 |
| abstract_inverted_index.co-design | 34, 67, 95, 129, 195 |
| abstract_inverted_index.dimension | 124 |
| abstract_inverted_index.extensive | 33 |
| abstract_inverted_index.hardware. | 42 |
| abstract_inverted_index.including | 62 |
| abstract_inverted_index.introduce | 70 |
| abstract_inverted_index.necessary | 52 |
| abstract_inverted_index.potential | 57 |
| abstract_inverted_index.promising | 168 |
| abstract_inverted_index.proposing | 155 |
| abstract_inverted_index.space’s | 143 |
| abstract_inverted_index.supernet. | 163 |
| abstract_inverted_index.versatile | 133 |
| abstract_inverted_index.artificial | 13 |
| abstract_inverted_index.challenges | 100 |
| abstract_inverted_index.complexity | 147 |
| abstract_inverted_index.developing | 12 |
| abstract_inverted_index.evaluating | 161 |
| abstract_inverted_index.increasing | 1 |
| abstract_inverted_index.operations | 201 |
| abstract_inverted_index.operators, | 120 |
| abstract_inverted_index.optimizing | 38 |
| abstract_inverted_index.popularity | 2 |
| abstract_inverted_index.prediction | 175 |
| abstract_inverted_index.strategies | 96 |
| abstract_inverted_index.techniques | 157 |
| abstract_inverted_index.automation, | 44 |
| abstract_inverted_index.benchmarks, | 176 |
| abstract_inverted_index.challenges, | 150 |
| abstract_inverted_index.efficiency, | 202, 205 |
| abstract_inverted_index.encompasses | 132 |
| abstract_inverted_index.performance | 186, 208 |
| abstract_inverted_index.recommender | 15, 18, 59, 211 |
| abstract_inverted_index.strategies. | 68 |
| abstract_inverted_index.architecture | 27, 40, 191 |
| abstract_inverted_index.improvements | 209 |
| abstract_inverted_index.optimization | 31 |
| abstract_inverted_index.perspective, | 113, 130, 196 |
| abstract_inverted_index.Click-Through | 172 |
| abstract_inverted_index.architectures | 93 |
| abstract_inverted_index.connectivity, | 122 |
| abstract_inverted_index.heterogeneity | 105 |
| abstract_inverted_index.multimodality | 103 |
| abstract_inverted_index.opportunities | 10 |
| abstract_inverted_index.outperforming | 177 |
| abstract_inverted_index.AutoML-crafted | 182 |
| abstract_inverted_index.configurations | 136 |
| abstract_inverted_index.floating-point | 200 |
| abstract_inverted_index.heterogeneity, | 145 |
| abstract_inverted_index.recommendation | 108 |
| abstract_inverted_index.model–hardware | 66 |
| abstract_inverted_index.state-of-the-art | 185 |
| abstract_inverted_index.hardware-efficient | 139 |
| abstract_inverted_index.Processing-In-Memory | 134 |
| abstract_inverted_index.intelligence–based | 14 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 13 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8799999952316284 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.61887662 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |