Towards Automated Personality Identification Using Speech Acts Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1609/icwsm.v7i2.14469
The way people communicate — be it verbally, visually, or via text– is indicative of personality traits. In social media the concept of the status update is used for individuals to communicate to their social networks in an always-on fashion. In doing so individuals utilize various kinds of speech acts that, while primarily communicating their content, also leave traces of their personality dimensions behind. We human-coded a set of Facebook status updates from the myPersonality dataset in terms of speech acts label and then experimented with surface level linguistic features including lexical, syntactic, and simple sentiment detection to automatically label status updates as their appropriate speech act. We apply supervised learning to the dataset and using our features are able to classify with high accuracy two dominant kinds of acts that have been found to occur in social media. At the same time we used the coded data to perform a regression analysis to determine which speech acts are significant of certain personality dimensions. The implications of our work allow for automatic large-scale personality identification through social media status updates.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/icwsm.v7i2.14469
- https://ojs.aaai.org/index.php/ICWSM/article/download/14469/14318
- OA Status
- diamond
- Cited By
- 23
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2270699505
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2270699505Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/icwsm.v7i2.14469Digital Object Identifier
- Title
-
Towards Automated Personality Identification Using Speech ActsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-03Full publication date if available
- Authors
-
Darren Scott Appling, Erica Briscoe, Heather B. Hayes, Rudolph L. MappusList of authors in order
- Landing page
-
https://doi.org/10.1609/icwsm.v7i2.14469Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/ICWSM/article/download/14469/14318Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/ICWSM/article/download/14469/14318Direct OA link when available
- Concepts
-
Personality, Identification (biology), Set (abstract data type), Computer science, Social media, Big Five personality traits, Scale (ratio), Natural language processing, Artificial intelligence, Psychology, Social psychology, World Wide Web, Quantum mechanics, Programming language, Botany, Physics, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
23Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2022: 2, 2020: 4, 2019: 2, 2018: 4Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2270699505 |
|---|---|
| doi | https://doi.org/10.1609/icwsm.v7i2.14469 |
| ids.doi | https://doi.org/10.1609/icwsm.v7i2.14469 |
| ids.mag | 2270699505 |
| ids.openalex | https://openalex.org/W2270699505 |
| fwci | 0.50797018 |
| type | article |
| title | Towards Automated Personality Identification Using Speech Acts |
| biblio.issue | 2 |
| biblio.volume | 7 |
| biblio.last_page | 13 |
| biblio.first_page | 10 |
| topics[0].id | https://openalex.org/T11040 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3203 |
| topics[0].subfield.display_name | Clinical Psychology |
| topics[0].display_name | Personality Traits and Psychology |
| topics[1].id | https://openalex.org/T12488 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9883999824523926 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3207 |
| topics[1].subfield.display_name | Social Psychology |
| topics[1].display_name | Mental Health via Writing |
| topics[2].id | https://openalex.org/T12380 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.984499990940094 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Authorship Attribution and Profiling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C187288502 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7479898929595947 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q641118 |
| concepts[0].display_name | Personality |
| concepts[1].id | https://openalex.org/C116834253 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6550173759460449 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[1].display_name | Identification (biology) |
| concepts[2].id | https://openalex.org/C177264268 |
| concepts[2].level | 2 |
| concepts[2].score | 0.629765510559082 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[2].display_name | Set (abstract data type) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6112890243530273 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C518677369 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6028228998184204 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q202833 |
| concepts[4].display_name | Social media |
| concepts[5].id | https://openalex.org/C2865642 |
| concepts[5].level | 3 |
| concepts[5].score | 0.532484233379364 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q378132 |
| concepts[5].display_name | Big Five personality traits |
| concepts[6].id | https://openalex.org/C2778755073 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4844694137573242 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[6].display_name | Scale (ratio) |
| concepts[7].id | https://openalex.org/C204321447 |
| concepts[7].level | 1 |
| concepts[7].score | 0.47181713581085205 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[7].display_name | Natural language processing |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3820588290691376 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C15744967 |
| concepts[9].level | 0 |
| concepts[9].score | 0.37639299035072327 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[9].display_name | Psychology |
| concepts[10].id | https://openalex.org/C77805123 |
| concepts[10].level | 1 |
| concepts[10].score | 0.24636313319206238 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[10].display_name | Social psychology |
| concepts[11].id | https://openalex.org/C136764020 |
| concepts[11].level | 1 |
| concepts[11].score | 0.15908965468406677 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[11].display_name | World Wide Web |
| concepts[12].id | https://openalex.org/C62520636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[12].display_name | Quantum mechanics |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C59822182 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[14].display_name | Botany |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/personality |
| keywords[0].score | 0.7479898929595947 |
| keywords[0].display_name | Personality |
| keywords[1].id | https://openalex.org/keywords/identification |
| keywords[1].score | 0.6550173759460449 |
| keywords[1].display_name | Identification (biology) |
| keywords[2].id | https://openalex.org/keywords/set |
| keywords[2].score | 0.629765510559082 |
| keywords[2].display_name | Set (abstract data type) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6112890243530273 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/social-media |
| keywords[4].score | 0.6028228998184204 |
| keywords[4].display_name | Social media |
| keywords[5].id | https://openalex.org/keywords/big-five-personality-traits |
| keywords[5].score | 0.532484233379364 |
| keywords[5].display_name | Big Five personality traits |
| keywords[6].id | https://openalex.org/keywords/scale |
| keywords[6].score | 0.4844694137573242 |
| keywords[6].display_name | Scale (ratio) |
| keywords[7].id | https://openalex.org/keywords/natural-language-processing |
| keywords[7].score | 0.47181713581085205 |
| keywords[7].display_name | Natural language processing |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3820588290691376 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/psychology |
| keywords[9].score | 0.37639299035072327 |
| keywords[9].display_name | Psychology |
| keywords[10].id | https://openalex.org/keywords/social-psychology |
| keywords[10].score | 0.24636313319206238 |
| keywords[10].display_name | Social psychology |
| keywords[11].id | https://openalex.org/keywords/world-wide-web |
| keywords[11].score | 0.15908965468406677 |
| keywords[11].display_name | World Wide Web |
| language | en |
| locations[0].id | doi:10.1609/icwsm.v7i2.14469 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387284482 |
| locations[0].source.issn | 2162-3449, 2334-0770 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2162-3449 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the International AAAI Conference on Web and Social Media |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/ICWSM/article/download/14469/14318 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the International AAAI Conference on Web and Social Media |
| locations[0].landing_page_url | https://doi.org/10.1609/icwsm.v7i2.14469 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5010185515 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Darren Scott Appling |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I130701444 |
| authorships[0].affiliations[0].raw_affiliation_string | Georgia Institute of Technology |
| authorships[0].institutions[0].id | https://openalex.org/I130701444 |
| authorships[0].institutions[0].ror | https://ror.org/01zkghx44 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I130701444 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Georgia Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Darren Appling |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Georgia Institute of Technology |
| authorships[1].author.id | https://openalex.org/A5052396585 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Erica Briscoe |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I130701444 |
| authorships[1].affiliations[0].raw_affiliation_string | Georgia Institute of Technology |
| authorships[1].institutions[0].id | https://openalex.org/I130701444 |
| authorships[1].institutions[0].ror | https://ror.org/01zkghx44 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I130701444 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Georgia Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Erica Briscoe |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Georgia Institute of Technology |
| authorships[2].author.id | https://openalex.org/A5080188661 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Heather B. Hayes |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I130701444 |
| authorships[2].affiliations[0].raw_affiliation_string | Georgia Institute of Technology |
| authorships[2].institutions[0].id | https://openalex.org/I130701444 |
| authorships[2].institutions[0].ror | https://ror.org/01zkghx44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I130701444 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Georgia Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Heather Hayes |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Georgia Institute of Technology |
| authorships[3].author.id | https://openalex.org/A5042882698 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Rudolph L. Mappus |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I130701444 |
| authorships[3].affiliations[0].raw_affiliation_string | Georgia Institute of Technology |
| authorships[3].institutions[0].id | https://openalex.org/I130701444 |
| authorships[3].institutions[0].ror | https://ror.org/01zkghx44 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I130701444 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Georgia Institute of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Rudolph Mappus |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Georgia Institute of Technology |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/ICWSM/article/download/14469/14318 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards Automated Personality Identification Using Speech Acts |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11040 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3203 |
| primary_topic.subfield.display_name | Clinical Psychology |
| primary_topic.display_name | Personality Traits and Psychology |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2898732673, https://openalex.org/W1977056376, https://openalex.org/W2410053581, https://openalex.org/W2358230867, https://openalex.org/W2383658677, https://openalex.org/W1990545028, https://openalex.org/W3123203398, https://openalex.org/W4312622923, https://openalex.org/W2796384540 |
| cited_by_count | 23 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2018 |
| counts_by_year[4].cited_by_count | 4 |
| counts_by_year[5].year | 2017 |
| counts_by_year[5].cited_by_count | 5 |
| counts_by_year[6].year | 2016 |
| counts_by_year[6].cited_by_count | 1 |
| counts_by_year[7].year | 2015 |
| counts_by_year[7].cited_by_count | 2 |
| counts_by_year[8].year | 2014 |
| counts_by_year[8].cited_by_count | 1 |
| counts_by_year[9].year | 2013 |
| counts_by_year[9].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/icwsm.v7i2.14469 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387284482 |
| best_oa_location.source.issn | 2162-3449, 2334-0770 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2162-3449 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the International AAAI Conference on Web and Social Media |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/ICWSM/article/download/14469/14318 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the International AAAI Conference on Web and Social Media |
| best_oa_location.landing_page_url | https://doi.org/10.1609/icwsm.v7i2.14469 |
| primary_location.id | doi:10.1609/icwsm.v7i2.14469 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387284482 |
| primary_location.source.issn | 2162-3449, 2334-0770 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2162-3449 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the International AAAI Conference on Web and Social Media |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/ICWSM/article/download/14469/14318 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the International AAAI Conference on Web and Social Media |
| primary_location.landing_page_url | https://doi.org/10.1609/icwsm.v7i2.14469 |
| publication_date | 2021-08-03 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W6679720418, https://openalex.org/W2269669084, https://openalex.org/W2182468807, https://openalex.org/W2153803020, https://openalex.org/W2111975591, https://openalex.org/W1901600440, https://openalex.org/W2251183320, https://openalex.org/W2122491924, https://openalex.org/W6636805335, https://openalex.org/W6772468152, https://openalex.org/W6674552650, https://openalex.org/W2140910804, https://openalex.org/W2038751884, https://openalex.org/W1576632330, https://openalex.org/W2143426320, https://openalex.org/W2995748625, https://openalex.org/W187208967, https://openalex.org/W2132475942, https://openalex.org/W1654173042, https://openalex.org/W4248703939, https://openalex.org/W2097219834 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 66, 150 |
| abstract_inverted_index.At | 139 |
| abstract_inverted_index.In | 17, 40 |
| abstract_inverted_index.We | 64, 107 |
| abstract_inverted_index.an | 37 |
| abstract_inverted_index.as | 102 |
| abstract_inverted_index.be | 5 |
| abstract_inverted_index.in | 36, 76, 136 |
| abstract_inverted_index.is | 12, 26 |
| abstract_inverted_index.it | 6 |
| abstract_inverted_index.of | 14, 22, 47, 59, 68, 78, 128, 160, 166 |
| abstract_inverted_index.or | 9 |
| abstract_inverted_index.so | 42 |
| abstract_inverted_index.to | 30, 32, 97, 111, 120, 134, 148, 153 |
| abstract_inverted_index.we | 143 |
| abstract_inverted_index.The | 0, 164 |
| abstract_inverted_index.and | 82, 93, 114 |
| abstract_inverted_index.are | 118, 158 |
| abstract_inverted_index.for | 28, 170 |
| abstract_inverted_index.our | 116, 167 |
| abstract_inverted_index.set | 67 |
| abstract_inverted_index.the | 20, 23, 73, 112, 140, 145 |
| abstract_inverted_index.two | 125 |
| abstract_inverted_index.via | 10 |
| abstract_inverted_index.way | 1 |
| abstract_inverted_index.— | 4 |
| abstract_inverted_index.able | 119 |
| abstract_inverted_index.act. | 106 |
| abstract_inverted_index.acts | 49, 80, 129, 157 |
| abstract_inverted_index.also | 56 |
| abstract_inverted_index.been | 132 |
| abstract_inverted_index.data | 147 |
| abstract_inverted_index.from | 72 |
| abstract_inverted_index.have | 131 |
| abstract_inverted_index.high | 123 |
| abstract_inverted_index.same | 141 |
| abstract_inverted_index.that | 130 |
| abstract_inverted_index.then | 83 |
| abstract_inverted_index.time | 142 |
| abstract_inverted_index.used | 27, 144 |
| abstract_inverted_index.with | 85, 122 |
| abstract_inverted_index.work | 168 |
| abstract_inverted_index.allow | 169 |
| abstract_inverted_index.apply | 108 |
| abstract_inverted_index.coded | 146 |
| abstract_inverted_index.doing | 41 |
| abstract_inverted_index.found | 133 |
| abstract_inverted_index.kinds | 46, 127 |
| abstract_inverted_index.label | 81, 99 |
| abstract_inverted_index.leave | 57 |
| abstract_inverted_index.level | 87 |
| abstract_inverted_index.media | 19, 177 |
| abstract_inverted_index.occur | 135 |
| abstract_inverted_index.terms | 77 |
| abstract_inverted_index.that, | 50 |
| abstract_inverted_index.their | 33, 54, 60, 103 |
| abstract_inverted_index.using | 115 |
| abstract_inverted_index.which | 155 |
| abstract_inverted_index.while | 51 |
| abstract_inverted_index.media. | 138 |
| abstract_inverted_index.people | 2 |
| abstract_inverted_index.simple | 94 |
| abstract_inverted_index.social | 18, 34, 137, 176 |
| abstract_inverted_index.speech | 48, 79, 105, 156 |
| abstract_inverted_index.status | 24, 70, 100, 178 |
| abstract_inverted_index.traces | 58 |
| abstract_inverted_index.update | 25 |
| abstract_inverted_index.behind. | 63 |
| abstract_inverted_index.certain | 161 |
| abstract_inverted_index.concept | 21 |
| abstract_inverted_index.dataset | 75, 113 |
| abstract_inverted_index.perform | 149 |
| abstract_inverted_index.surface | 86 |
| abstract_inverted_index.text– | 11 |
| abstract_inverted_index.through | 175 |
| abstract_inverted_index.traits. | 16 |
| abstract_inverted_index.updates | 71, 101 |
| abstract_inverted_index.utilize | 44 |
| abstract_inverted_index.various | 45 |
| abstract_inverted_index.Facebook | 69 |
| abstract_inverted_index.accuracy | 124 |
| abstract_inverted_index.analysis | 152 |
| abstract_inverted_index.classify | 121 |
| abstract_inverted_index.content, | 55 |
| abstract_inverted_index.dominant | 126 |
| abstract_inverted_index.fashion. | 39 |
| abstract_inverted_index.features | 89, 117 |
| abstract_inverted_index.learning | 110 |
| abstract_inverted_index.lexical, | 91 |
| abstract_inverted_index.networks | 35 |
| abstract_inverted_index.updates. | 179 |
| abstract_inverted_index.always-on | 38 |
| abstract_inverted_index.automatic | 171 |
| abstract_inverted_index.detection | 96 |
| abstract_inverted_index.determine | 154 |
| abstract_inverted_index.including | 90 |
| abstract_inverted_index.primarily | 52 |
| abstract_inverted_index.sentiment | 95 |
| abstract_inverted_index.verbally, | 7 |
| abstract_inverted_index.visually, | 8 |
| abstract_inverted_index.dimensions | 62 |
| abstract_inverted_index.indicative | 13 |
| abstract_inverted_index.linguistic | 88 |
| abstract_inverted_index.regression | 151 |
| abstract_inverted_index.supervised | 109 |
| abstract_inverted_index.syntactic, | 92 |
| abstract_inverted_index.appropriate | 104 |
| abstract_inverted_index.communicate | 3, 31 |
| abstract_inverted_index.dimensions. | 163 |
| abstract_inverted_index.human-coded | 65 |
| abstract_inverted_index.individuals | 29, 43 |
| abstract_inverted_index.large-scale | 172 |
| abstract_inverted_index.personality | 15, 61, 162, 173 |
| abstract_inverted_index.significant | 159 |
| abstract_inverted_index.experimented | 84 |
| abstract_inverted_index.implications | 165 |
| abstract_inverted_index.automatically | 98 |
| abstract_inverted_index.communicating | 53 |
| abstract_inverted_index.myPersonality | 74 |
| abstract_inverted_index.identification | 174 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.65442567 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |