Towards automated physics-based absolute drug residence time predictions Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.26434/chemrxiv-2025-wg75c
The residence time (τ) of a drug bound to a receptor target is increasingly recognized as a key property to control during ligand-optimization campaigns and provides a useful dimension for modulating compound profiles in addition to binding affinity. For this reason, many computational approaches have been developed to predict this quantity. Several methods employ an empirical correlation between the residence time and the measured simulation time for a ligand to escape the binding pocket during biased molecular dynamics (MD), while others rely on more formal approaches that require a substantially larger computational effort and/or setup times often impractical in a fast-paced drug-discovery setting. Here we propose a new scheme to calculate absolute residence times by using two enhanced sampling approaches, consisting of an exploration phase followed by an exploitation phase that estimates the residence time: Random Acceleration Molecular Dynamics (RAMD) to harvest plausible egress pathways, and then Infrequent Metadynamics (iMetaD) to estimate residence time. This protocol caters to drug discovery programs, where a key aspect is the compromise between accuracy, throughput, and ease of use. We benchmark this approach by computing residence times for a congeneric series of ligands binding to several diverse drug targets and show that we can achieve good accuracy (RMSE of 1.22 and R2 of 0.80 in log10(τ)) without manually tuning the enhanced sampling parameters.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.26434/chemrxiv-2025-wg75c
- OA Status
- gold
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407537181
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407537181Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26434/chemrxiv-2025-wg75cDigital Object Identifier
- Title
-
Towards automated physics-based absolute drug residence time predictionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-13Full publication date if available
- Authors
-
Zachary Smith, Davide Branduardi, Dmitry Lupyan, G. D’Arrigo, Pratyush Tiwary, Lingle Wang, Goran KrilovList of authors in order
- Landing page
-
https://doi.org/10.26434/chemrxiv-2025-wg75cPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.26434/chemrxiv-2025-wg75cDirect OA link when available
- Concepts
-
Absolute (philosophy), Residence time (fluid dynamics), Statistical physics, Physics, Computer science, Engineering, Philosophy, Epistemology, Geotechnical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407537181 |
|---|---|
| doi | https://doi.org/10.26434/chemrxiv-2025-wg75c |
| ids.doi | https://doi.org/10.26434/chemrxiv-2025-wg75c |
| ids.openalex | https://openalex.org/W4407537181 |
| fwci | 10.03679086 |
| type | preprint |
| title | Towards automated physics-based absolute drug residence time predictions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9932000041007996 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T10908 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9373000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1607 |
| topics[1].subfield.display_name | Spectroscopy |
| topics[1].display_name | Analytical Chemistry and Chromatography |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777487392 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7071069478988647 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q481201 |
| concepts[0].display_name | Absolute (philosophy) |
| concepts[1].id | https://openalex.org/C2775913793 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4926162362098694 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3030793 |
| concepts[1].display_name | Residence time (fluid dynamics) |
| concepts[2].id | https://openalex.org/C121864883 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4586922526359558 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[2].display_name | Statistical physics |
| concepts[3].id | https://openalex.org/C121332964 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3475258946418762 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[3].display_name | Physics |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.34051603078842163 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C127413603 |
| concepts[5].level | 0 |
| concepts[5].score | 0.17567336559295654 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[5].display_name | Engineering |
| concepts[6].id | https://openalex.org/C138885662 |
| concepts[6].level | 0 |
| concepts[6].score | 0.08007150888442993 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[6].display_name | Philosophy |
| concepts[7].id | https://openalex.org/C111472728 |
| concepts[7].level | 1 |
| concepts[7].score | 0.078684002161026 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[7].display_name | Epistemology |
| concepts[8].id | https://openalex.org/C187320778 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1349130 |
| concepts[8].display_name | Geotechnical engineering |
| keywords[0].id | https://openalex.org/keywords/absolute |
| keywords[0].score | 0.7071069478988647 |
| keywords[0].display_name | Absolute (philosophy) |
| keywords[1].id | https://openalex.org/keywords/residence-time |
| keywords[1].score | 0.4926162362098694 |
| keywords[1].display_name | Residence time (fluid dynamics) |
| keywords[2].id | https://openalex.org/keywords/statistical-physics |
| keywords[2].score | 0.4586922526359558 |
| keywords[2].display_name | Statistical physics |
| keywords[3].id | https://openalex.org/keywords/physics |
| keywords[3].score | 0.3475258946418762 |
| keywords[3].display_name | Physics |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.34051603078842163 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/engineering |
| keywords[5].score | 0.17567336559295654 |
| keywords[5].display_name | Engineering |
| keywords[6].id | https://openalex.org/keywords/philosophy |
| keywords[6].score | 0.08007150888442993 |
| keywords[6].display_name | Philosophy |
| keywords[7].id | https://openalex.org/keywords/epistemology |
| keywords[7].score | 0.078684002161026 |
| keywords[7].display_name | Epistemology |
| language | en |
| locations[0].id | doi:10.26434/chemrxiv-2025-wg75c |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.26434/chemrxiv-2025-wg75c |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5052048127 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0844-7942 |
| authorships[0].author.display_name | Zachary Smith |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I203455613 |
| authorships[0].affiliations[0].raw_affiliation_string | Schrodinger (United States) |
| authorships[0].institutions[0].id | https://openalex.org/I203455613 |
| authorships[0].institutions[0].ror | https://ror.org/05a3z6914 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I203455613 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Schrodinger (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zachary Smith |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Schrodinger (United States) |
| authorships[1].author.id | https://openalex.org/A5072863926 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7542-9122 |
| authorships[1].author.display_name | Davide Branduardi |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4387155454 |
| authorships[1].affiliations[0].raw_affiliation_string | Astex Pharmaceuticals |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I203455613 |
| authorships[1].affiliations[1].raw_affiliation_string | Schrodinger (United States) |
| authorships[1].institutions[0].id | https://openalex.org/I4387155454 |
| authorships[1].institutions[0].ror | https://ror.org/05fx1fs38 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I114030911, https://openalex.org/I4387155454 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | Astex Pharmaceuticals |
| authorships[1].institutions[1].id | https://openalex.org/I203455613 |
| authorships[1].institutions[1].ror | https://ror.org/05a3z6914 |
| authorships[1].institutions[1].type | company |
| authorships[1].institutions[1].lineage | https://openalex.org/I203455613 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Schrodinger (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Davide Branduardi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Astex Pharmaceuticals, Schrodinger (United States) |
| authorships[2].author.id | https://openalex.org/A5097734859 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Dmitry Lupyan |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I203455613 |
| authorships[2].affiliations[0].raw_affiliation_string | Schrodinger (United States) |
| authorships[2].institutions[0].id | https://openalex.org/I203455613 |
| authorships[2].institutions[0].ror | https://ror.org/05a3z6914 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I203455613 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Schrodinger (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dmitry Lupyan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Schrodinger (United States) |
| authorships[3].author.id | https://openalex.org/A5051386014 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | G. D’Arrigo |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I203455613 |
| authorships[3].affiliations[0].raw_affiliation_string | Schrodinger (United States) |
| authorships[3].institutions[0].id | https://openalex.org/I203455613 |
| authorships[3].institutions[0].ror | https://ror.org/05a3z6914 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I203455613 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Schrodinger (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Giulia D'Arrigo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Schrodinger (United States) |
| authorships[4].author.id | https://openalex.org/A5070740163 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2412-6922 |
| authorships[4].author.display_name | Pratyush Tiwary |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I66946132 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Maryland, College Park |
| authorships[4].institutions[0].id | https://openalex.org/I66946132 |
| authorships[4].institutions[0].ror | https://ror.org/047s2c258 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I66946132 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Maryland, College Park |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Pratyush Tiwary |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Maryland, College Park |
| authorships[5].author.id | https://openalex.org/A5073422740 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8170-6798 |
| authorships[5].author.display_name | Lingle Wang |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I203455613 |
| authorships[5].affiliations[0].raw_affiliation_string | Schrodinger (United States) |
| authorships[5].institutions[0].id | https://openalex.org/I203455613 |
| authorships[5].institutions[0].ror | https://ror.org/05a3z6914 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I203455613 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Schrodinger (United States) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Lingle Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Schrodinger (United States) |
| authorships[6].author.id | https://openalex.org/A5039964251 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Goran Krilov |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I203455613 |
| authorships[6].affiliations[0].raw_affiliation_string | Schrodinger (United States) |
| authorships[6].institutions[0].id | https://openalex.org/I203455613 |
| authorships[6].institutions[0].ror | https://ror.org/05a3z6914 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I203455613 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Schrodinger (United States) |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Goran Krilov |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Schrodinger (United States) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.26434/chemrxiv-2025-wg75c |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards automated physics-based absolute drug residence time predictions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9932000041007996 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2935759653, https://openalex.org/W3105167352, https://openalex.org/W54078636, https://openalex.org/W2954470139, https://openalex.org/W1501425562, https://openalex.org/W2902782467, https://openalex.org/W3084825885 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.26434/chemrxiv-2025-wg75c |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.26434/chemrxiv-2025-wg75c |
| primary_location.id | doi:10.26434/chemrxiv-2025-wg75c |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.26434/chemrxiv-2025-wg75c |
| publication_date | 2025-02-13 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 9, 16, 26, 67, 88, 99, 106, 162, 184 |
| abstract_inverted_index.R2 | 207 |
| abstract_inverted_index.We | 175 |
| abstract_inverted_index.an | 54, 122, 127 |
| abstract_inverted_index.as | 15 |
| abstract_inverted_index.by | 114, 126, 179 |
| abstract_inverted_index.in | 33, 98, 210 |
| abstract_inverted_index.is | 12, 165 |
| abstract_inverted_index.of | 4, 121, 173, 187, 204, 208 |
| abstract_inverted_index.on | 82 |
| abstract_inverted_index.to | 8, 19, 35, 47, 69, 109, 140, 150, 157, 190 |
| abstract_inverted_index.we | 104, 198 |
| abstract_inverted_index.For | 38 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 24, 61, 145, 171, 195, 206 |
| abstract_inverted_index.can | 199 |
| abstract_inverted_index.for | 29, 66, 183 |
| abstract_inverted_index.key | 17, 163 |
| abstract_inverted_index.new | 107 |
| abstract_inverted_index.the | 58, 62, 71, 132, 166, 215 |
| abstract_inverted_index.two | 116 |
| abstract_inverted_index.(τ) | 3 |
| abstract_inverted_index.0.80 | 209 |
| abstract_inverted_index.1.22 | 205 |
| abstract_inverted_index.Here | 103 |
| abstract_inverted_index.This | 154 |
| abstract_inverted_index.been | 45 |
| abstract_inverted_index.drug | 6, 158, 193 |
| abstract_inverted_index.ease | 172 |
| abstract_inverted_index.good | 201 |
| abstract_inverted_index.have | 44 |
| abstract_inverted_index.many | 41 |
| abstract_inverted_index.more | 83 |
| abstract_inverted_index.rely | 81 |
| abstract_inverted_index.show | 196 |
| abstract_inverted_index.that | 86, 130, 197 |
| abstract_inverted_index.then | 146 |
| abstract_inverted_index.this | 39, 49, 177 |
| abstract_inverted_index.time | 2, 60, 65 |
| abstract_inverted_index.use. | 174 |
| abstract_inverted_index.(MD), | 78 |
| abstract_inverted_index.(RMSE | 203 |
| abstract_inverted_index.bound | 7 |
| abstract_inverted_index.often | 96 |
| abstract_inverted_index.phase | 124, 129 |
| abstract_inverted_index.setup | 94 |
| abstract_inverted_index.time. | 153 |
| abstract_inverted_index.time: | 134 |
| abstract_inverted_index.times | 95, 113, 182 |
| abstract_inverted_index.using | 115 |
| abstract_inverted_index.where | 161 |
| abstract_inverted_index.while | 79 |
| abstract_inverted_index.(RAMD) | 139 |
| abstract_inverted_index.Random | 135 |
| abstract_inverted_index.and/or | 93 |
| abstract_inverted_index.aspect | 164 |
| abstract_inverted_index.biased | 75 |
| abstract_inverted_index.caters | 156 |
| abstract_inverted_index.during | 21, 74 |
| abstract_inverted_index.effort | 92 |
| abstract_inverted_index.egress | 143 |
| abstract_inverted_index.employ | 53 |
| abstract_inverted_index.escape | 70 |
| abstract_inverted_index.formal | 84 |
| abstract_inverted_index.larger | 90 |
| abstract_inverted_index.ligand | 68 |
| abstract_inverted_index.others | 80 |
| abstract_inverted_index.pocket | 73 |
| abstract_inverted_index.scheme | 108 |
| abstract_inverted_index.series | 186 |
| abstract_inverted_index.target | 11 |
| abstract_inverted_index.tuning | 214 |
| abstract_inverted_index.useful | 27 |
| abstract_inverted_index.Several | 51 |
| abstract_inverted_index.achieve | 200 |
| abstract_inverted_index.between | 57, 168 |
| abstract_inverted_index.binding | 36, 72, 189 |
| abstract_inverted_index.control | 20 |
| abstract_inverted_index.diverse | 192 |
| abstract_inverted_index.harvest | 141 |
| abstract_inverted_index.ligands | 188 |
| abstract_inverted_index.methods | 52 |
| abstract_inverted_index.predict | 48 |
| abstract_inverted_index.propose | 105 |
| abstract_inverted_index.reason, | 40 |
| abstract_inverted_index.require | 87 |
| abstract_inverted_index.several | 191 |
| abstract_inverted_index.targets | 194 |
| abstract_inverted_index.without | 212 |
| abstract_inverted_index.(iMetaD) | 149 |
| abstract_inverted_index.Dynamics | 138 |
| abstract_inverted_index.absolute | 111 |
| abstract_inverted_index.accuracy | 202 |
| abstract_inverted_index.addition | 34 |
| abstract_inverted_index.approach | 178 |
| abstract_inverted_index.compound | 31 |
| abstract_inverted_index.dynamics | 77 |
| abstract_inverted_index.enhanced | 117, 216 |
| abstract_inverted_index.estimate | 151 |
| abstract_inverted_index.followed | 125 |
| abstract_inverted_index.manually | 213 |
| abstract_inverted_index.measured | 63 |
| abstract_inverted_index.profiles | 32 |
| abstract_inverted_index.property | 18 |
| abstract_inverted_index.protocol | 155 |
| abstract_inverted_index.provides | 25 |
| abstract_inverted_index.receptor | 10 |
| abstract_inverted_index.sampling | 118, 217 |
| abstract_inverted_index.setting. | 102 |
| abstract_inverted_index.Molecular | 137 |
| abstract_inverted_index.accuracy, | 169 |
| abstract_inverted_index.affinity. | 37 |
| abstract_inverted_index.benchmark | 176 |
| abstract_inverted_index.calculate | 110 |
| abstract_inverted_index.campaigns | 23 |
| abstract_inverted_index.computing | 180 |
| abstract_inverted_index.developed | 46 |
| abstract_inverted_index.dimension | 28 |
| abstract_inverted_index.discovery | 159 |
| abstract_inverted_index.empirical | 55 |
| abstract_inverted_index.estimates | 131 |
| abstract_inverted_index.molecular | 76 |
| abstract_inverted_index.pathways, | 144 |
| abstract_inverted_index.plausible | 142 |
| abstract_inverted_index.programs, | 160 |
| abstract_inverted_index.quantity. | 50 |
| abstract_inverted_index.residence | 1, 59, 112, 133, 152, 181 |
| abstract_inverted_index.Infrequent | 147 |
| abstract_inverted_index.approaches | 43, 85 |
| abstract_inverted_index.compromise | 167 |
| abstract_inverted_index.congeneric | 185 |
| abstract_inverted_index.consisting | 120 |
| abstract_inverted_index.fast-paced | 100 |
| abstract_inverted_index.log10(τ)) | 211 |
| abstract_inverted_index.modulating | 30 |
| abstract_inverted_index.recognized | 14 |
| abstract_inverted_index.simulation | 64 |
| abstract_inverted_index.approaches, | 119 |
| abstract_inverted_index.correlation | 56 |
| abstract_inverted_index.exploration | 123 |
| abstract_inverted_index.impractical | 97 |
| abstract_inverted_index.parameters. | 218 |
| abstract_inverted_index.throughput, | 170 |
| abstract_inverted_index.Acceleration | 136 |
| abstract_inverted_index.Metadynamics | 148 |
| abstract_inverted_index.exploitation | 128 |
| abstract_inverted_index.increasingly | 13 |
| abstract_inverted_index.computational | 42, 91 |
| abstract_inverted_index.substantially | 89 |
| abstract_inverted_index.drug-discovery | 101 |
| abstract_inverted_index.ligand-optimization | 22 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.93867322 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |