Towards Automatic Identification of Missing Tissues using a Geometric-Learning Correspondence Model Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.11265
Missing tissue presents a big challenge for dose mapping, e.g., in the reirradiation setting. We propose a pipeline to identify missing tissue on intra-patient structure meshes using a previously trained geometric-learning correspondence model. For our application, we relied on the prediction discrepancies between forward and backward correspondences of the input meshes, quantified using a correspondence-based Inverse Consistency Error (cICE). We optimised the threshold applied to cICE to identify missing points in a dataset of 35 simulated mandible resections. Our identified threshold, 5.5 mm, produced a balanced accuracy score of 0.883 in the training data, using an ensemble approach. This pipeline produced plausible results for a real case where ~25% of the mandible was removed after a surgical intervention. The pipeline, however, failed on a more extreme case where ~50% of the mandible was removed. This is the first time geometric-learning modelling is proposed to identify missing points in corresponding anatomy.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.11265
- https://arxiv.org/pdf/2502.11265
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407695825
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407695825Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.11265Digital Object Identifier
- Title
-
Towards Automatic Identification of Missing Tissues using a Geometric-Learning Correspondence ModelWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-16Full publication date if available
- Authors
-
Eliana Vásquez Osorio, E HENDERSONList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.11265Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.11265Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.11265Direct OA link when available
- Concepts
-
Identification (biology), Artificial intelligence, Computer science, Pattern recognition (psychology), Biology, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407695825 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.11265 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.11265 |
| ids.openalex | https://openalex.org/W4407695825 |
| fwci | |
| type | preprint |
| title | Towards Automatic Identification of Missing Tissues using a Geometric-Learning Correspondence Model |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10992 |
| topics[0].field.id | https://openalex.org/fields/12 |
| topics[0].field.display_name | Arts and Humanities |
| topics[0].score | 0.9736999869346619 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1204 |
| topics[0].subfield.display_name | Archeology |
| topics[0].display_name | Forensic Anthropology and Bioarchaeology Studies |
| topics[1].id | https://openalex.org/T10862 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9584000110626221 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI in cancer detection |
| topics[2].id | https://openalex.org/T11984 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9440000057220459 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Anatomy and Medical Technology |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C116834253 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6660665273666382 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[0].display_name | Identification (biology) |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5351259708404541 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5108325481414795 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.340299129486084 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C86803240 |
| concepts[4].level | 0 |
| concepts[4].score | 0.07311275601387024 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[4].display_name | Biology |
| concepts[5].id | https://openalex.org/C59822182 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[5].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/identification |
| keywords[0].score | 0.6660665273666382 |
| keywords[0].display_name | Identification (biology) |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5351259708404541 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5108325481414795 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.340299129486084 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/biology |
| keywords[4].score | 0.07311275601387024 |
| keywords[4].display_name | Biology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.11265 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.11265 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.11265 |
| locations[1].id | doi:10.48550/arxiv.2502.11265 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.11265 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5009159721 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0741-994X |
| authorships[0].author.display_name | Eliana Vásquez Osorio |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Osorio, Eliana M. Vasquez |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5081518328 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3752-4054 |
| authorships[1].author.display_name | E HENDERSON |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Henderson, Edward |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.11265 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards Automatic Identification of Missing Tissues using a Geometric-Learning Correspondence Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10992 |
| primary_topic.field.id | https://openalex.org/fields/12 |
| primary_topic.field.display_name | Arts and Humanities |
| primary_topic.score | 0.9736999869346619 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1204 |
| primary_topic.subfield.display_name | Archeology |
| primary_topic.display_name | Forensic Anthropology and Bioarchaeology Studies |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.11265 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.11265 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.11265 |
| primary_location.id | pmh:oai:arXiv.org:2502.11265 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.11265 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.11265 |
| publication_date | 2025-02-16 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 16, 27, 53, 71, 84, 104, 115, 123 |
| abstract_inverted_index.35 | 74 |
| abstract_inverted_index.We | 14, 59 |
| abstract_inverted_index.an | 95 |
| abstract_inverted_index.in | 10, 70, 90, 147 |
| abstract_inverted_index.is | 135, 141 |
| abstract_inverted_index.of | 47, 73, 88, 109, 129 |
| abstract_inverted_index.on | 22, 38, 122 |
| abstract_inverted_index.to | 18, 64, 66, 143 |
| abstract_inverted_index.we | 36 |
| abstract_inverted_index.5.5 | 81 |
| abstract_inverted_index.For | 33 |
| abstract_inverted_index.Our | 78 |
| abstract_inverted_index.The | 118 |
| abstract_inverted_index.and | 44 |
| abstract_inverted_index.big | 4 |
| abstract_inverted_index.for | 6, 103 |
| abstract_inverted_index.mm, | 82 |
| abstract_inverted_index.our | 34 |
| abstract_inverted_index.the | 11, 39, 48, 61, 91, 110, 130, 136 |
| abstract_inverted_index.was | 112, 132 |
| abstract_inverted_index.This | 98, 134 |
| abstract_inverted_index.cICE | 65 |
| abstract_inverted_index.case | 106, 126 |
| abstract_inverted_index.dose | 7 |
| abstract_inverted_index.more | 124 |
| abstract_inverted_index.real | 105 |
| abstract_inverted_index.time | 138 |
| abstract_inverted_index.~25% | 108 |
| abstract_inverted_index.~50% | 128 |
| abstract_inverted_index.0.883 | 89 |
| abstract_inverted_index.Error | 57 |
| abstract_inverted_index.after | 114 |
| abstract_inverted_index.data, | 93 |
| abstract_inverted_index.e.g., | 9 |
| abstract_inverted_index.first | 137 |
| abstract_inverted_index.input | 49 |
| abstract_inverted_index.score | 87 |
| abstract_inverted_index.using | 26, 52, 94 |
| abstract_inverted_index.where | 107, 127 |
| abstract_inverted_index.failed | 121 |
| abstract_inverted_index.meshes | 25 |
| abstract_inverted_index.model. | 32 |
| abstract_inverted_index.points | 69, 146 |
| abstract_inverted_index.relied | 37 |
| abstract_inverted_index.tissue | 1, 21 |
| abstract_inverted_index.(cICE). | 58 |
| abstract_inverted_index.Inverse | 55 |
| abstract_inverted_index.Missing | 0 |
| abstract_inverted_index.applied | 63 |
| abstract_inverted_index.between | 42 |
| abstract_inverted_index.dataset | 72 |
| abstract_inverted_index.extreme | 125 |
| abstract_inverted_index.forward | 43 |
| abstract_inverted_index.meshes, | 50 |
| abstract_inverted_index.missing | 20, 68, 145 |
| abstract_inverted_index.propose | 15 |
| abstract_inverted_index.removed | 113 |
| abstract_inverted_index.results | 102 |
| abstract_inverted_index.trained | 29 |
| abstract_inverted_index.accuracy | 86 |
| abstract_inverted_index.anatomy. | 149 |
| abstract_inverted_index.backward | 45 |
| abstract_inverted_index.balanced | 85 |
| abstract_inverted_index.ensemble | 96 |
| abstract_inverted_index.however, | 120 |
| abstract_inverted_index.identify | 19, 67, 144 |
| abstract_inverted_index.mandible | 76, 111, 131 |
| abstract_inverted_index.mapping, | 8 |
| abstract_inverted_index.pipeline | 17, 99 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.produced | 83, 100 |
| abstract_inverted_index.proposed | 142 |
| abstract_inverted_index.removed. | 133 |
| abstract_inverted_index.setting. | 13 |
| abstract_inverted_index.surgical | 116 |
| abstract_inverted_index.training | 92 |
| abstract_inverted_index.approach. | 97 |
| abstract_inverted_index.challenge | 5 |
| abstract_inverted_index.modelling | 140 |
| abstract_inverted_index.optimised | 60 |
| abstract_inverted_index.pipeline, | 119 |
| abstract_inverted_index.plausible | 101 |
| abstract_inverted_index.simulated | 75 |
| abstract_inverted_index.structure | 24 |
| abstract_inverted_index.threshold | 62 |
| abstract_inverted_index.identified | 79 |
| abstract_inverted_index.prediction | 40 |
| abstract_inverted_index.previously | 28 |
| abstract_inverted_index.quantified | 51 |
| abstract_inverted_index.threshold, | 80 |
| abstract_inverted_index.Consistency | 56 |
| abstract_inverted_index.resections. | 77 |
| abstract_inverted_index.application, | 35 |
| abstract_inverted_index.corresponding | 148 |
| abstract_inverted_index.discrepancies | 41 |
| abstract_inverted_index.intervention. | 117 |
| abstract_inverted_index.intra-patient | 23 |
| abstract_inverted_index.reirradiation | 12 |
| abstract_inverted_index.correspondence | 31 |
| abstract_inverted_index.correspondences | 46 |
| abstract_inverted_index.geometric-learning | 30, 139 |
| abstract_inverted_index.correspondence-based | 54 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |