Towards Deep Learning based Hand Keypoints Detection for Rapid Sequential Movements from RGB Images Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1145/3197768.3201538
Hand keypoints detection and pose estimation has numerous applications in computer vision, but it is still an unsolved problem in many aspects. An application of hand keypoints detection is in performing cognitive assessments of a subject by observing the performance of that subject in physical tasks involving rapid finger motion. As a part of this work, we introduce a novel hand key-points benchmark dataset that consists of hand gestures recorded specifically for cognitive behavior monitoring. We explore the state of the art methods in hand keypoint detection and we provide quantitative evaluations for the performance of these methods on our dataset. In future, these results and our dataset can serve as a useful benchmark for hand keypoint recognition for rapid finger movements.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1145/3197768.3201538
- OA Status
- green
- Cited By
- 1
- References
- 11
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2796226609
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2796226609Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3197768.3201538Digital Object Identifier
- Title
-
Towards Deep Learning based Hand Keypoints Detection for Rapid Sequential Movements from RGB ImagesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-06-26Full publication date if available
- Authors
-
Srujana Gattupalli, Ashwin Ramesh Babu, James Brady, Fillia Makedon, Vassilis AthitsosList of authors in order
- Landing page
-
https://doi.org/10.1145/3197768.3201538Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1804.01174Direct OA link when available
- Concepts
-
Benchmark (surveying), Computer science, Artificial intelligence, RGB color model, Gesture, Computer vision, Key (lock), Deep learning, Pattern recognition (psychology), Machine learning, Geography, Computer security, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- References (count)
-
11Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2796226609 |
|---|---|
| doi | https://doi.org/10.1145/3197768.3201538 |
| ids.doi | https://doi.org/10.1145/3197768.3201538 |
| ids.mag | 2796226609 |
| ids.openalex | https://openalex.org/W2796226609 |
| fwci | 0.20236091 |
| type | preprint |
| title | Towards Deep Learning based Hand Keypoints Detection for Rapid Sequential Movements from RGB Images |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 37 |
| biblio.first_page | 31 |
| topics[0].id | https://openalex.org/T11398 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1709 |
| topics[0].subfield.display_name | Human-Computer Interaction |
| topics[0].display_name | Hand Gesture Recognition Systems |
| topics[1].id | https://openalex.org/T10812 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Human Pose and Action Recognition |
| topics[2].id | https://openalex.org/T10653 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9962000250816345 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Robot Manipulation and Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185798385 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8158042430877686 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[0].display_name | Benchmark (surveying) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8107576966285706 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.77876877784729 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C82990744 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5804978609085083 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q166194 |
| concepts[3].display_name | RGB color model |
| concepts[4].id | https://openalex.org/C207347870 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5675813555717468 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q371174 |
| concepts[4].display_name | Gesture |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.49453112483024597 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C26517878 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4944264888763428 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[6].display_name | Key (lock) |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4731767475605011 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.40402650833129883 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.35519587993621826 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C205649164 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[10].display_name | Geography |
| concepts[11].id | https://openalex.org/C38652104 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[11].display_name | Computer security |
| concepts[12].id | https://openalex.org/C13280743 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[12].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/benchmark |
| keywords[0].score | 0.8158042430877686 |
| keywords[0].display_name | Benchmark (surveying) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8107576966285706 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.77876877784729 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/rgb-color-model |
| keywords[3].score | 0.5804978609085083 |
| keywords[3].display_name | RGB color model |
| keywords[4].id | https://openalex.org/keywords/gesture |
| keywords[4].score | 0.5675813555717468 |
| keywords[4].display_name | Gesture |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.49453112483024597 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/key |
| keywords[6].score | 0.4944264888763428 |
| keywords[6].display_name | Key (lock) |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.4731767475605011 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.40402650833129883 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.35519587993621826 |
| keywords[9].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1145/3197768.3201538 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference |
| locations[0].landing_page_url | https://doi.org/10.1145/3197768.3201538 |
| locations[1].id | pmh:oai:arXiv.org:1804.01174 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/1804.01174 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/1804.01174 |
| locations[2].id | mag:2796226609 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | http://export.arxiv.org/pdf/1804.01174 |
| locations[3].id | doi:10.48550/arxiv.1804.01174 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.1804.01174 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5069654250 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Srujana Gattupalli |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I189196454 |
| authorships[0].affiliations[0].raw_affiliation_string | Vision-Learning-Mining Lab, University of Texas at Arlington, Arlington, Texas#TAB# |
| authorships[0].institutions[0].id | https://openalex.org/I189196454 |
| authorships[0].institutions[0].ror | https://ror.org/019kgqr73 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I189196454 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | The University of Texas at Arlington |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Srujana Gattupalli |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Vision-Learning-Mining Lab, University of Texas at Arlington, Arlington, Texas#TAB# |
| authorships[1].author.id | https://openalex.org/A5023297665 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4131-7659 |
| authorships[1].author.display_name | Ashwin Ramesh Babu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I189196454 |
| authorships[1].affiliations[0].raw_affiliation_string | Heracleia - Human Centered Computing Lab, University of Texas at Arlington, Arlington, Texas |
| authorships[1].institutions[0].id | https://openalex.org/I189196454 |
| authorships[1].institutions[0].ror | https://ror.org/019kgqr73 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I189196454 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | The University of Texas at Arlington |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ashwin Ramesh Babu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Heracleia - Human Centered Computing Lab, University of Texas at Arlington, Arlington, Texas |
| authorships[2].author.id | https://openalex.org/A5055029995 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | James Brady |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I189196454 |
| authorships[2].affiliations[0].raw_affiliation_string | Heracleia - Human Centered Computing Lab, University of Texas at Arlington, Arlington, Texas |
| authorships[2].institutions[0].id | https://openalex.org/I189196454 |
| authorships[2].institutions[0].ror | https://ror.org/019kgqr73 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I189196454 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | The University of Texas at Arlington |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | James Robert Brady |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Heracleia - Human Centered Computing Lab, University of Texas at Arlington, Arlington, Texas |
| authorships[3].author.id | https://openalex.org/A5044363105 |
| authorships[3].author.orcid | https://orcid.org/0009-0001-8831-6872 |
| authorships[3].author.display_name | Fillia Makedon |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I189196454 |
| authorships[3].affiliations[0].raw_affiliation_string | Heracleia - Human Centered Computing Lab, University of Texas at Arlington, Arlington, Texas |
| authorships[3].institutions[0].id | https://openalex.org/I189196454 |
| authorships[3].institutions[0].ror | https://ror.org/019kgqr73 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I189196454 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | The University of Texas at Arlington |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Fillia Makedon |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Heracleia - Human Centered Computing Lab, University of Texas at Arlington, Arlington, Texas |
| authorships[4].author.id | https://openalex.org/A5025213339 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1281-6168 |
| authorships[4].author.display_name | Vassilis Athitsos |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I189196454 |
| authorships[4].affiliations[0].raw_affiliation_string | Vision-Learning-Mining Lab, University of Texas at Arlington, Arlington, Texas#TAB# |
| authorships[4].institutions[0].id | https://openalex.org/I189196454 |
| authorships[4].institutions[0].ror | https://ror.org/019kgqr73 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I189196454 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | The University of Texas at Arlington |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Vassilis Athitsos |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Vision-Learning-Mining Lab, University of Texas at Arlington, Arlington, Texas#TAB# |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1804.01174 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards Deep Learning based Hand Keypoints Detection for Rapid Sequential Movements from RGB Images |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11398 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1709 |
| primary_topic.subfield.display_name | Human-Computer Interaction |
| primary_topic.display_name | Hand Gesture Recognition Systems |
| related_works | https://openalex.org/W3109074784, https://openalex.org/W3091357794, https://openalex.org/W2112252462, https://openalex.org/W2962992555, https://openalex.org/W3155705977, https://openalex.org/W2400766644, https://openalex.org/W1970629627, https://openalex.org/W3118932564, https://openalex.org/W2991451943, https://openalex.org/W2133893220, https://openalex.org/W2766141522, https://openalex.org/W2770969640, https://openalex.org/W2903167365, https://openalex.org/W2060816892, https://openalex.org/W2608825006, https://openalex.org/W2563703706, https://openalex.org/W3011208089, https://openalex.org/W2978180355, https://openalex.org/W2678619569, https://openalex.org/W3011561521 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:1804.01174 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1804.01174 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1804.01174 |
| primary_location.id | doi:10.1145/3197768.3201538 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference |
| primary_location.landing_page_url | https://doi.org/10.1145/3197768.3201538 |
| publication_date | 2018-06-26 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2591808669, https://openalex.org/W2382036597, https://openalex.org/W3148721422, https://openalex.org/W2963119249, https://openalex.org/W2963488642, https://openalex.org/W2007104354, https://openalex.org/W2227547437, https://openalex.org/W1138362829, https://openalex.org/W1913984289, https://openalex.org/W2949677570, https://openalex.org/W2632004665 |
| referenced_works_count | 11 |
| abstract_inverted_index.a | 34, 51, 58, 111 |
| abstract_inverted_index.An | 22 |
| abstract_inverted_index.As | 50 |
| abstract_inverted_index.In | 101 |
| abstract_inverted_index.We | 75 |
| abstract_inverted_index.an | 16 |
| abstract_inverted_index.as | 110 |
| abstract_inverted_index.by | 36 |
| abstract_inverted_index.in | 9, 19, 29, 43, 83 |
| abstract_inverted_index.is | 14, 28 |
| abstract_inverted_index.it | 13 |
| abstract_inverted_index.of | 24, 33, 40, 53, 66, 79, 95 |
| abstract_inverted_index.on | 98 |
| abstract_inverted_index.we | 56, 88 |
| abstract_inverted_index.and | 3, 87, 105 |
| abstract_inverted_index.art | 81 |
| abstract_inverted_index.but | 12 |
| abstract_inverted_index.can | 108 |
| abstract_inverted_index.for | 71, 92, 114, 118 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.our | 99, 106 |
| abstract_inverted_index.the | 38, 77, 80, 93 |
| abstract_inverted_index.Hand | 0 |
| abstract_inverted_index.hand | 25, 60, 67, 84, 115 |
| abstract_inverted_index.many | 20 |
| abstract_inverted_index.part | 52 |
| abstract_inverted_index.pose | 4 |
| abstract_inverted_index.that | 41, 64 |
| abstract_inverted_index.this | 54 |
| abstract_inverted_index.novel | 59 |
| abstract_inverted_index.rapid | 47, 119 |
| abstract_inverted_index.serve | 109 |
| abstract_inverted_index.state | 78 |
| abstract_inverted_index.still | 15 |
| abstract_inverted_index.tasks | 45 |
| abstract_inverted_index.these | 96, 103 |
| abstract_inverted_index.work, | 55 |
| abstract_inverted_index.finger | 48, 120 |
| abstract_inverted_index.useful | 112 |
| abstract_inverted_index.dataset | 63, 107 |
| abstract_inverted_index.explore | 76 |
| abstract_inverted_index.future, | 102 |
| abstract_inverted_index.methods | 82, 97 |
| abstract_inverted_index.motion. | 49 |
| abstract_inverted_index.problem | 18 |
| abstract_inverted_index.provide | 89 |
| abstract_inverted_index.results | 104 |
| abstract_inverted_index.subject | 35, 42 |
| abstract_inverted_index.vision, | 11 |
| abstract_inverted_index.aspects. | 21 |
| abstract_inverted_index.behavior | 73 |
| abstract_inverted_index.computer | 10 |
| abstract_inverted_index.consists | 65 |
| abstract_inverted_index.dataset. | 100 |
| abstract_inverted_index.gestures | 68 |
| abstract_inverted_index.keypoint | 85, 116 |
| abstract_inverted_index.numerous | 7 |
| abstract_inverted_index.physical | 44 |
| abstract_inverted_index.recorded | 69 |
| abstract_inverted_index.unsolved | 17 |
| abstract_inverted_index.benchmark | 62, 113 |
| abstract_inverted_index.cognitive | 31, 72 |
| abstract_inverted_index.detection | 2, 27, 86 |
| abstract_inverted_index.introduce | 57 |
| abstract_inverted_index.involving | 46 |
| abstract_inverted_index.keypoints | 1, 26 |
| abstract_inverted_index.observing | 37 |
| abstract_inverted_index.estimation | 5 |
| abstract_inverted_index.key-points | 61 |
| abstract_inverted_index.movements. | 121 |
| abstract_inverted_index.performing | 30 |
| abstract_inverted_index.application | 23 |
| abstract_inverted_index.assessments | 32 |
| abstract_inverted_index.evaluations | 91 |
| abstract_inverted_index.monitoring. | 74 |
| abstract_inverted_index.performance | 39, 94 |
| abstract_inverted_index.recognition | 117 |
| abstract_inverted_index.applications | 8 |
| abstract_inverted_index.quantitative | 90 |
| abstract_inverted_index.specifically | 70 |
| cited_by_percentile_year.max | 93 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.46775623 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |