Towards Deep Learning based Hand Keypoints Detection for Rapid\n Sequential Movements from RGB Images Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1804.01174
Hand keypoints detection and pose estimation has numerous applications in\ncomputer vision, but it is still an unsolved problem in many aspects. An\napplication of hand keypoints detection is in performing cognitive assessments\nof a subject by observing the performance of that subject in physical tasks\ninvolving rapid finger motion. As a part of this work, we introduce a novel\nhand key-points benchmark dataset that consists of hand gestures recorded\nspecifically for cognitive behavior monitoring. We explore the state of the art\nmethods in hand keypoint detection and we provide quantitative evaluations for\nthe performance of these methods on our dataset. In future, these results and\nour dataset can serve as a useful benchmark for hand keypoint recognition for\nrapid finger movements.\n
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1804.01174
- https://arxiv.org/pdf/1804.01174
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4299797077
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4299797077Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1804.01174Digital Object Identifier
- Title
-
Towards Deep Learning based Hand Keypoints Detection for Rapid\n Sequential Movements from RGB ImagesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-04-03Full publication date if available
- Authors
-
Srujana Gattupalli, Ashwin Ramesh Babu, James Brady, Fillia Makedon, Vassilis AthitsosList of authors in order
- Landing page
-
https://arxiv.org/abs/1804.01174Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1804.01174Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1804.01174Direct OA link when available
- Concepts
-
Benchmark (surveying), Computer science, Artificial intelligence, Gesture, RGB color model, Key (lock), Deep learning, Computer vision, Cognition, Machine learning, Pattern recognition (psychology), Psychology, Geodesy, Neuroscience, Computer security, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4299797077 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1804.01174 |
| ids.openalex | https://openalex.org/W4299797077 |
| fwci | 0.0 |
| type | preprint |
| title | Towards Deep Learning based Hand Keypoints Detection for Rapid\n Sequential Movements from RGB Images |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11398 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1709 |
| topics[0].subfield.display_name | Human-Computer Interaction |
| topics[0].display_name | Hand Gesture Recognition Systems |
| topics[1].id | https://openalex.org/T10812 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9955999851226807 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Human Pose and Action Recognition |
| topics[2].id | https://openalex.org/T11285 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.9796000123023987 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3204 |
| topics[2].subfield.display_name | Developmental and Educational Psychology |
| topics[2].display_name | Hearing Impairment and Communication |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185798385 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8280084729194641 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[0].display_name | Benchmark (surveying) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8257599472999573 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7515336275100708 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C207347870 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5897558331489563 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q371174 |
| concepts[3].display_name | Gesture |
| concepts[4].id | https://openalex.org/C82990744 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5441752672195435 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q166194 |
| concepts[4].display_name | RGB color model |
| concepts[5].id | https://openalex.org/C26517878 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5277317762374878 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[5].display_name | Key (lock) |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45382770895957947 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4348160922527313 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C169900460 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4155212938785553 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[8].display_name | Cognition |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4042556881904602 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3602927327156067 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C15744967 |
| concepts[11].level | 0 |
| concepts[11].score | 0.05262807011604309 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[11].display_name | Psychology |
| concepts[12].id | https://openalex.org/C13280743 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[12].display_name | Geodesy |
| concepts[13].id | https://openalex.org/C169760540 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[13].display_name | Neuroscience |
| concepts[14].id | https://openalex.org/C38652104 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[14].display_name | Computer security |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/benchmark |
| keywords[0].score | 0.8280084729194641 |
| keywords[0].display_name | Benchmark (surveying) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8257599472999573 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7515336275100708 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/gesture |
| keywords[3].score | 0.5897558331489563 |
| keywords[3].display_name | Gesture |
| keywords[4].id | https://openalex.org/keywords/rgb-color-model |
| keywords[4].score | 0.5441752672195435 |
| keywords[4].display_name | RGB color model |
| keywords[5].id | https://openalex.org/keywords/key |
| keywords[5].score | 0.5277317762374878 |
| keywords[5].display_name | Key (lock) |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.45382770895957947 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.4348160922527313 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/cognition |
| keywords[8].score | 0.4155212938785553 |
| keywords[8].display_name | Cognition |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.4042556881904602 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3602927327156067 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/psychology |
| keywords[11].score | 0.05262807011604309 |
| keywords[11].display_name | Psychology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1804.01174 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1804.01174 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1804.01174 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5069654250 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Srujana Gattupalli |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gattupalli, Srujana |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5023297665 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4131-7659 |
| authorships[1].author.display_name | Ashwin Ramesh Babu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Babu, Ashwin Ramesh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5055029995 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | James Brady |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Brady, James Robert |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5044363105 |
| authorships[3].author.orcid | https://orcid.org/0009-0001-8831-6872 |
| authorships[3].author.display_name | Fillia Makedon |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Makedon, Fillia |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5025213339 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1281-6168 |
| authorships[4].author.display_name | Vassilis Athitsos |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Athitsos, Vassilis |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1804.01174 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards Deep Learning based Hand Keypoints Detection for Rapid\n Sequential Movements from RGB Images |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-10-27T03:07:04.448195 |
| primary_topic.id | https://openalex.org/T11398 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1709 |
| primary_topic.subfield.display_name | Human-Computer Interaction |
| primary_topic.display_name | Hand Gesture Recognition Systems |
| related_works | https://openalex.org/W2066003895, https://openalex.org/W2537963312, https://openalex.org/W2537762514, https://openalex.org/W2349788282, https://openalex.org/W577271088, https://openalex.org/W2120801881, https://openalex.org/W1982853263, https://openalex.org/W1974473538, https://openalex.org/W2020010749, https://openalex.org/W2796116650 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:1804.01174 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1804.01174 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1804.01174 |
| primary_location.id | pmh:oai:arXiv.org:1804.01174 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1804.01174 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1804.01174 |
| publication_date | 2018-04-03 |
| publication_year | 2018 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 31, 47, 54, 102 |
| abstract_inverted_index.As | 46 |
| abstract_inverted_index.In | 93 |
| abstract_inverted_index.We | 69 |
| abstract_inverted_index.an | 15 |
| abstract_inverted_index.as | 101 |
| abstract_inverted_index.by | 33 |
| abstract_inverted_index.in | 18, 27, 40, 76 |
| abstract_inverted_index.is | 13, 26 |
| abstract_inverted_index.it | 12 |
| abstract_inverted_index.of | 22, 37, 49, 61, 73, 87 |
| abstract_inverted_index.on | 90 |
| abstract_inverted_index.we | 52, 81 |
| abstract_inverted_index.and | 3, 80 |
| abstract_inverted_index.but | 11 |
| abstract_inverted_index.can | 99 |
| abstract_inverted_index.for | 65, 105 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.our | 91 |
| abstract_inverted_index.the | 35, 71, 74 |
| abstract_inverted_index.Hand | 0 |
| abstract_inverted_index.hand | 23, 62, 77, 106 |
| abstract_inverted_index.many | 19 |
| abstract_inverted_index.part | 48 |
| abstract_inverted_index.pose | 4 |
| abstract_inverted_index.that | 38, 59 |
| abstract_inverted_index.this | 50 |
| abstract_inverted_index.rapid | 43 |
| abstract_inverted_index.serve | 100 |
| abstract_inverted_index.state | 72 |
| abstract_inverted_index.still | 14 |
| abstract_inverted_index.these | 88, 95 |
| abstract_inverted_index.work, | 51 |
| abstract_inverted_index.finger | 44, 110 |
| abstract_inverted_index.useful | 103 |
| abstract_inverted_index.dataset | 58, 98 |
| abstract_inverted_index.explore | 70 |
| abstract_inverted_index.future, | 94 |
| abstract_inverted_index.methods | 89 |
| abstract_inverted_index.motion. | 45 |
| abstract_inverted_index.problem | 17 |
| abstract_inverted_index.provide | 82 |
| abstract_inverted_index.results | 96 |
| abstract_inverted_index.subject | 32, 39 |
| abstract_inverted_index.vision, | 10 |
| abstract_inverted_index.and\nour | 97 |
| abstract_inverted_index.aspects. | 20 |
| abstract_inverted_index.behavior | 67 |
| abstract_inverted_index.consists | 60 |
| abstract_inverted_index.dataset. | 92 |
| abstract_inverted_index.for\nthe | 85 |
| abstract_inverted_index.gestures | 63 |
| abstract_inverted_index.keypoint | 78, 107 |
| abstract_inverted_index.numerous | 7 |
| abstract_inverted_index.physical | 41 |
| abstract_inverted_index.unsolved | 16 |
| abstract_inverted_index.benchmark | 57, 104 |
| abstract_inverted_index.cognitive | 29, 66 |
| abstract_inverted_index.detection | 2, 25, 79 |
| abstract_inverted_index.introduce | 53 |
| abstract_inverted_index.keypoints | 1, 24 |
| abstract_inverted_index.observing | 34 |
| abstract_inverted_index.estimation | 5 |
| abstract_inverted_index.for\nrapid | 109 |
| abstract_inverted_index.key-points | 56 |
| abstract_inverted_index.performing | 28 |
| abstract_inverted_index.evaluations | 84 |
| abstract_inverted_index.monitoring. | 68 |
| abstract_inverted_index.novel\nhand | 55 |
| abstract_inverted_index.performance | 36, 86 |
| abstract_inverted_index.recognition | 108 |
| abstract_inverted_index.applications | 8 |
| abstract_inverted_index.art\nmethods | 75 |
| abstract_inverted_index.in\ncomputer | 9 |
| abstract_inverted_index.movements.\n | 111 |
| abstract_inverted_index.quantitative | 83 |
| abstract_inverted_index.An\napplication | 21 |
| abstract_inverted_index.assessments\nof | 30 |
| abstract_inverted_index.tasks\ninvolving | 42 |
| abstract_inverted_index.recorded\nspecifically | 64 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.33001871 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |