Towards dynamic multi-modal phenotyping using chest radiographs and physiological data Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2111.02710
The healthcare domain is characterized by heterogeneous data modalities, such as imaging and physiological data. In practice, the variety of medical data assists clinicians in decision-making. However, most of the current state-of-the-art deep learning models solely rely upon carefully curated data of a single modality. In this paper, we propose a dynamic training approach to learn modality-specific data representations and to integrate auxiliary features, instead of solely relying on a single modality. Our preliminary experiments results for a patient phenotyping task using physiological data in MIMIC-IV & chest radiographs in the MIMIC- CXR dataset show that our proposed approach achieves the highest area under the receiver operating characteristic curve (AUROC) (0.764 AUROC) compared to the performance of the benchmark method in previous work, which only used physiological data (0.740 AUROC). For a set of five recurring or chronic diseases with periodic acute episodes, including cardiac dysrhythmia, conduction disorders, and congestive heart failure, the AUROC improves from 0.747 to 0.798. This illustrates the benefit of leveraging the chest imaging modality in the phenotyping task and highlights the potential of multi-modal learning in medical applications.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2111.02710
- https://arxiv.org/pdf/2111.02710
- OA Status
- green
- References
- 11
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3208375333
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3208375333Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2111.02710Digital Object Identifier
- Title
-
Towards dynamic multi-modal phenotyping using chest radiographs and physiological dataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-04Full publication date if available
- Authors
-
Nasir Hayat, Krzysztof J. Geras, Farah E. ShamoutList of authors in order
- Landing page
-
https://arxiv.org/abs/2111.02710Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2111.02710Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2111.02710Direct OA link when available
- Concepts
-
Modality (human–computer interaction), Modalities, Benchmark (surveying), Task (project management), Receiver operating characteristic, Computer science, Artificial intelligence, Set (abstract data type), Radiography, Data set, Machine learning, Medicine, Radiology, Geography, Economics, Management, Sociology, Programming language, Social science, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
11Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3208375333 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2111.02710 |
| ids.doi | https://doi.org/10.48550/arxiv.2111.02710 |
| ids.mag | 3208375333 |
| ids.openalex | https://openalex.org/W3208375333 |
| fwci | |
| type | preprint |
| title | Towards dynamic multi-modal phenotyping using chest radiographs and physiological data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| topics[2].id | https://openalex.org/T12419 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9932000041007996 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2740 |
| topics[2].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[2].display_name | Phonocardiography and Auscultation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780226545 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8468520045280457 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6888030 |
| concepts[0].display_name | Modality (human–computer interaction) |
| concepts[1].id | https://openalex.org/C2779903281 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7177425622940063 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6888026 |
| concepts[1].display_name | Modalities |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7027771472930908 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C2780451532 |
| concepts[3].level | 2 |
| concepts[3].score | 0.592616856098175 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[3].display_name | Task (project management) |
| concepts[4].id | https://openalex.org/C58471807 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5798670053482056 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[4].display_name | Receiver operating characteristic |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5234189033508301 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5084561109542847 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C177264268 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5009181499481201 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[7].display_name | Set (abstract data type) |
| concepts[8].id | https://openalex.org/C36454342 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47286057472229004 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q245341 |
| concepts[8].display_name | Radiography |
| concepts[9].id | https://openalex.org/C58489278 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4600927233695984 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[9].display_name | Data set |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4388096332550049 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3888854384422302 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C126838900 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3096828758716583 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[12].display_name | Radiology |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| concepts[15].id | https://openalex.org/C187736073 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[15].display_name | Management |
| concepts[16].id | https://openalex.org/C144024400 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[16].display_name | Sociology |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| concepts[18].id | https://openalex.org/C36289849 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[18].display_name | Social science |
| concepts[19].id | https://openalex.org/C13280743 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[19].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/modality |
| keywords[0].score | 0.8468520045280457 |
| keywords[0].display_name | Modality (human–computer interaction) |
| keywords[1].id | https://openalex.org/keywords/modalities |
| keywords[1].score | 0.7177425622940063 |
| keywords[1].display_name | Modalities |
| keywords[2].id | https://openalex.org/keywords/benchmark |
| keywords[2].score | 0.7027771472930908 |
| keywords[2].display_name | Benchmark (surveying) |
| keywords[3].id | https://openalex.org/keywords/task |
| keywords[3].score | 0.592616856098175 |
| keywords[3].display_name | Task (project management) |
| keywords[4].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[4].score | 0.5798670053482056 |
| keywords[4].display_name | Receiver operating characteristic |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5234189033508301 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5084561109542847 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/set |
| keywords[7].score | 0.5009181499481201 |
| keywords[7].display_name | Set (abstract data type) |
| keywords[8].id | https://openalex.org/keywords/radiography |
| keywords[8].score | 0.47286057472229004 |
| keywords[8].display_name | Radiography |
| keywords[9].id | https://openalex.org/keywords/data-set |
| keywords[9].score | 0.4600927233695984 |
| keywords[9].display_name | Data set |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.4388096332550049 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.3888854384422302 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/radiology |
| keywords[12].score | 0.3096828758716583 |
| keywords[12].display_name | Radiology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2111.02710 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2111.02710 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2111.02710 |
| locations[1].id | mag:3208375333 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | http://arxiv.org/pdf/2111.02710.pdf |
| locations[2].id | doi:10.48550/arxiv.2111.02710 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2111.02710 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5110069404 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Nasir Hayat |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I57206974 |
| authorships[0].affiliations[0].raw_affiliation_string | New York University** |
| authorships[0].institutions[0].id | https://openalex.org/I57206974 |
| authorships[0].institutions[0].ror | https://ror.org/0190ak572 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I57206974 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | New York University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nasir Hayat |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | New York University** |
| authorships[1].author.id | https://openalex.org/A5010954824 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0549-1446 |
| authorships[1].author.display_name | Krzysztof J. Geras |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I57206974 |
| authorships[1].affiliations[0].raw_affiliation_string | New York University** |
| authorships[1].institutions[0].id | https://openalex.org/I57206974 |
| authorships[1].institutions[0].ror | https://ror.org/0190ak572 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I57206974 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | New York University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Krzysztof J. Geras |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | New York University** |
| authorships[2].author.id | https://openalex.org/A5023660328 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6076-725X |
| authorships[2].author.display_name | Farah E. Shamout |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I57206974 |
| authorships[2].affiliations[0].raw_affiliation_string | New York University** |
| authorships[2].institutions[0].id | https://openalex.org/I57206974 |
| authorships[2].institutions[0].ror | https://ror.org/0190ak572 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I57206974 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | New York University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Farah E. Shamout |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | New York University** |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2111.02710 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards dynamic multi-modal phenotyping using chest radiographs and physiological data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| related_works | https://openalex.org/W2979322170, https://openalex.org/W3016194608, https://openalex.org/W3122950889, https://openalex.org/W2970028733, https://openalex.org/W3159817553, https://openalex.org/W2989662674, https://openalex.org/W3187782056, https://openalex.org/W3156331990, https://openalex.org/W3138913153, https://openalex.org/W2991997789, https://openalex.org/W3088585410, https://openalex.org/W2886612741, https://openalex.org/W3159513182, https://openalex.org/W3157655146, https://openalex.org/W3144061366, https://openalex.org/W3105777051, https://openalex.org/W3139971937, https://openalex.org/W3023372682, https://openalex.org/W2087710753, https://openalex.org/W3200960388 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2111.02710 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2111.02710 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2111.02710 |
| primary_location.id | pmh:oai:arXiv.org:2111.02710 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2111.02710 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2111.02710 |
| publication_date | 2021-11-04 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2162800060, https://openalex.org/W2194775991, https://openalex.org/W3163163108, https://openalex.org/W3047969938, https://openalex.org/W2396881363, https://openalex.org/W2064675550, https://openalex.org/W2925218498, https://openalex.org/W3101973032, https://openalex.org/W1522684182, https://openalex.org/W3045295565, https://openalex.org/W3134139276 |
| referenced_works_count | 11 |
| abstract_inverted_index.a | 42, 50, 69, 77, 131 |
| abstract_inverted_index.In | 15, 45 |
| abstract_inverted_index.as | 10 |
| abstract_inverted_index.by | 5 |
| abstract_inverted_index.in | 24, 84, 89, 120, 169, 180 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 19, 28, 41, 65, 116, 133, 163, 177 |
| abstract_inverted_index.on | 68 |
| abstract_inverted_index.or | 136 |
| abstract_inverted_index.to | 54, 60, 113, 157 |
| abstract_inverted_index.we | 48 |
| abstract_inverted_index.CXR | 92 |
| abstract_inverted_index.For | 130 |
| abstract_inverted_index.Our | 72 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 12, 59, 148, 173 |
| abstract_inverted_index.for | 76 |
| abstract_inverted_index.our | 96 |
| abstract_inverted_index.set | 132 |
| abstract_inverted_index.the | 17, 29, 90, 100, 104, 114, 117, 152, 161, 165, 170, 175 |
| abstract_inverted_index.This | 159 |
| abstract_inverted_index.area | 102 |
| abstract_inverted_index.data | 7, 21, 40, 57, 83, 127 |
| abstract_inverted_index.deep | 32 |
| abstract_inverted_index.five | 134 |
| abstract_inverted_index.from | 155 |
| abstract_inverted_index.most | 27 |
| abstract_inverted_index.only | 124 |
| abstract_inverted_index.rely | 36 |
| abstract_inverted_index.show | 94 |
| abstract_inverted_index.such | 9 |
| abstract_inverted_index.task | 80, 172 |
| abstract_inverted_index.that | 95 |
| abstract_inverted_index.this | 46 |
| abstract_inverted_index.upon | 37 |
| abstract_inverted_index.used | 125 |
| abstract_inverted_index.with | 139 |
| abstract_inverted_index.& | 86 |
| abstract_inverted_index.0.747 | 156 |
| abstract_inverted_index.AUROC | 153 |
| abstract_inverted_index.acute | 141 |
| abstract_inverted_index.chest | 87, 166 |
| abstract_inverted_index.curve | 108 |
| abstract_inverted_index.data. | 14 |
| abstract_inverted_index.heart | 150 |
| abstract_inverted_index.learn | 55 |
| abstract_inverted_index.under | 103 |
| abstract_inverted_index.using | 81 |
| abstract_inverted_index.which | 123 |
| abstract_inverted_index.work, | 122 |
| abstract_inverted_index.(0.740 | 128 |
| abstract_inverted_index.(0.764 | 110 |
| abstract_inverted_index.0.798. | 158 |
| abstract_inverted_index.AUROC) | 111 |
| abstract_inverted_index.MIMIC- | 91 |
| abstract_inverted_index.domain | 2 |
| abstract_inverted_index.method | 119 |
| abstract_inverted_index.models | 34 |
| abstract_inverted_index.paper, | 47 |
| abstract_inverted_index.single | 43, 70 |
| abstract_inverted_index.solely | 35, 66 |
| abstract_inverted_index.(AUROC) | 109 |
| abstract_inverted_index.AUROC). | 129 |
| abstract_inverted_index.assists | 22 |
| abstract_inverted_index.benefit | 162 |
| abstract_inverted_index.cardiac | 144 |
| abstract_inverted_index.chronic | 137 |
| abstract_inverted_index.curated | 39 |
| abstract_inverted_index.current | 30 |
| abstract_inverted_index.dataset | 93 |
| abstract_inverted_index.dynamic | 51 |
| abstract_inverted_index.highest | 101 |
| abstract_inverted_index.imaging | 11, 167 |
| abstract_inverted_index.instead | 64 |
| abstract_inverted_index.medical | 20, 181 |
| abstract_inverted_index.patient | 78 |
| abstract_inverted_index.propose | 49 |
| abstract_inverted_index.relying | 67 |
| abstract_inverted_index.results | 75 |
| abstract_inverted_index.variety | 18 |
| abstract_inverted_index.However, | 26 |
| abstract_inverted_index.MIMIC-IV | 85 |
| abstract_inverted_index.achieves | 99 |
| abstract_inverted_index.approach | 53, 98 |
| abstract_inverted_index.compared | 112 |
| abstract_inverted_index.diseases | 138 |
| abstract_inverted_index.failure, | 151 |
| abstract_inverted_index.improves | 154 |
| abstract_inverted_index.learning | 33, 179 |
| abstract_inverted_index.modality | 168 |
| abstract_inverted_index.periodic | 140 |
| abstract_inverted_index.previous | 121 |
| abstract_inverted_index.proposed | 97 |
| abstract_inverted_index.receiver | 105 |
| abstract_inverted_index.training | 52 |
| abstract_inverted_index.auxiliary | 62 |
| abstract_inverted_index.benchmark | 118 |
| abstract_inverted_index.carefully | 38 |
| abstract_inverted_index.episodes, | 142 |
| abstract_inverted_index.features, | 63 |
| abstract_inverted_index.including | 143 |
| abstract_inverted_index.integrate | 61 |
| abstract_inverted_index.modality. | 44, 71 |
| abstract_inverted_index.operating | 106 |
| abstract_inverted_index.potential | 176 |
| abstract_inverted_index.practice, | 16 |
| abstract_inverted_index.recurring | 135 |
| abstract_inverted_index.clinicians | 23 |
| abstract_inverted_index.conduction | 146 |
| abstract_inverted_index.congestive | 149 |
| abstract_inverted_index.disorders, | 147 |
| abstract_inverted_index.healthcare | 1 |
| abstract_inverted_index.highlights | 174 |
| abstract_inverted_index.leveraging | 164 |
| abstract_inverted_index.experiments | 74 |
| abstract_inverted_index.illustrates | 160 |
| abstract_inverted_index.modalities, | 8 |
| abstract_inverted_index.multi-modal | 178 |
| abstract_inverted_index.performance | 115 |
| abstract_inverted_index.phenotyping | 79, 171 |
| abstract_inverted_index.preliminary | 73 |
| abstract_inverted_index.radiographs | 88 |
| abstract_inverted_index.dysrhythmia, | 145 |
| abstract_inverted_index.applications. | 182 |
| abstract_inverted_index.characterized | 4 |
| abstract_inverted_index.heterogeneous | 6 |
| abstract_inverted_index.physiological | 13, 82, 126 |
| abstract_inverted_index.characteristic | 107 |
| abstract_inverted_index.representations | 58 |
| abstract_inverted_index.decision-making. | 25 |
| abstract_inverted_index.state-of-the-art | 31 |
| abstract_inverted_index.modality-specific | 56 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |