Towards Efficient and Effective Unlearning of Large Language Models for Recommendation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.03536
The significant advancements in large language models (LLMs) give rise to a promising research direction, i.e., leveraging LLMs as recommenders (LLMRec). The efficacy of LLMRec arises from the open-world knowledge and reasoning capabilities inherent in LLMs. LLMRec acquires the recommendation capabilities through instruction tuning based on user interaction data. However, in order to protect user privacy and optimize utility, it is also crucial for LLMRec to intentionally forget specific user data, which is generally referred to as recommendation unlearning. In the era of LLMs, recommendation unlearning poses new challenges for LLMRec in terms of \textit{inefficiency} and \textit{ineffectiveness}. Existing unlearning methods require updating billions of parameters in LLMRec, which is costly and time-consuming. Besides, they always impact the model utility during the unlearning process. To this end, we propose \textbf{E2URec}, the first \underline{E}fficient and \underline{E}ffective \underline{U}nlearning method for LLM\underline{Rec}. Our proposed E2URec enhances the unlearning efficiency by updating only a few additional LoRA parameters, and improves the unlearning effectiveness by employing a teacher-student framework, where we maintain multiple teacher networks to guide the unlearning process. Extensive experiments show that E2URec outperforms state-of-the-art baselines on two real-world datasets. Specifically, E2URec can efficiently forget specific data without affecting recommendation performance. The source code is at \url{https://github.com/justarter/E2URec}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.03536
- https://arxiv.org/pdf/2403.03536
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392575829
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392575829Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.03536Digital Object Identifier
- Title
-
Towards Efficient and Effective Unlearning of Large Language Models for RecommendationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-06Full publication date if available
- Authors
-
Hangyu Wang, Jianghao Lin, Bo Chen, Yang Yang, Ruiming Tang, Weinan Zhang, Yong YuList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.03536Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.03536Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.03536Direct OA link when available
- Concepts
-
Computer science, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392575829 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.03536 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.03536 |
| ids.openalex | https://openalex.org/W4392575829 |
| fwci | |
| type | preprint |
| title | Towards Efficient and Effective Unlearning of Large Language Models for Recommendation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10203 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9897000193595886 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Recommender Systems and Techniques |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9865000247955322 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T13702 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9332000017166138 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.49657517671585083 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C41895202 |
| concepts[1].level | 1 |
| concepts[1].score | 0.4233816862106323 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[1].display_name | Linguistics |
| concepts[2].id | https://openalex.org/C138885662 |
| concepts[2].level | 0 |
| concepts[2].score | 0.13231408596038818 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[2].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.49657517671585083 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/linguistics |
| keywords[1].score | 0.4233816862106323 |
| keywords[1].display_name | Linguistics |
| keywords[2].id | https://openalex.org/keywords/philosophy |
| keywords[2].score | 0.13231408596038818 |
| keywords[2].display_name | Philosophy |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.03536 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.03536 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.03536 |
| locations[1].id | doi:10.48550/arxiv.2403.03536 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.03536 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5032497440 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-0410-5426 |
| authorships[0].author.display_name | Hangyu Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Hangyu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5010055657 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5935-2110 |
| authorships[1].author.display_name | Jianghao Lin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lin, Jianghao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102615268 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Bo Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Bo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100397725 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0608-9408 |
| authorships[3].author.display_name | Yang Yang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yang, Yang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5054330014 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9224-2431 |
| authorships[4].author.display_name | Ruiming Tang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tang, Ruiming |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5090720315 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0127-2425 |
| authorships[5].author.display_name | Weinan Zhang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhang, Weinan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5001571390 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0281-8271 |
| authorships[6].author.display_name | Yong Yu |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yu, Yong |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.03536 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards Efficient and Effective Unlearning of Large Language Models for Recommendation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10203 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9897000193595886 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Recommender Systems and Techniques |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2350741829, https://openalex.org/W2530322880 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.03536 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.03536 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.03536 |
| primary_location.id | pmh:oai:arXiv.org:2403.03536 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.03536 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.03536 |
| publication_date | 2024-03-06 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 11, 148, 160 |
| abstract_inverted_index.In | 79 |
| abstract_inverted_index.To | 123 |
| abstract_inverted_index.as | 18, 76 |
| abstract_inverted_index.at | 201 |
| abstract_inverted_index.by | 145, 158 |
| abstract_inverted_index.in | 3, 34, 50, 91, 105 |
| abstract_inverted_index.is | 60, 72, 108, 200 |
| abstract_inverted_index.it | 59 |
| abstract_inverted_index.of | 23, 82, 93, 103 |
| abstract_inverted_index.on | 45, 182 |
| abstract_inverted_index.to | 10, 52, 65, 75, 169 |
| abstract_inverted_index.we | 126, 164 |
| abstract_inverted_index.Our | 138 |
| abstract_inverted_index.The | 0, 21, 197 |
| abstract_inverted_index.and | 30, 56, 95, 110, 132, 153 |
| abstract_inverted_index.can | 188 |
| abstract_inverted_index.era | 81 |
| abstract_inverted_index.few | 149 |
| abstract_inverted_index.for | 63, 89, 136 |
| abstract_inverted_index.new | 87 |
| abstract_inverted_index.the | 27, 38, 80, 116, 120, 129, 142, 155, 171 |
| abstract_inverted_index.two | 183 |
| abstract_inverted_index.LLMs | 17 |
| abstract_inverted_index.LoRA | 151 |
| abstract_inverted_index.also | 61 |
| abstract_inverted_index.code | 199 |
| abstract_inverted_index.data | 192 |
| abstract_inverted_index.end, | 125 |
| abstract_inverted_index.from | 26 |
| abstract_inverted_index.give | 8 |
| abstract_inverted_index.only | 147 |
| abstract_inverted_index.rise | 9 |
| abstract_inverted_index.show | 176 |
| abstract_inverted_index.that | 177 |
| abstract_inverted_index.they | 113 |
| abstract_inverted_index.this | 124 |
| abstract_inverted_index.user | 46, 54, 69 |
| abstract_inverted_index.LLMs, | 83 |
| abstract_inverted_index.LLMs. | 35 |
| abstract_inverted_index.based | 44 |
| abstract_inverted_index.data, | 70 |
| abstract_inverted_index.data. | 48 |
| abstract_inverted_index.first | 130 |
| abstract_inverted_index.guide | 170 |
| abstract_inverted_index.i.e., | 15 |
| abstract_inverted_index.large | 4 |
| abstract_inverted_index.model | 117 |
| abstract_inverted_index.order | 51 |
| abstract_inverted_index.poses | 86 |
| abstract_inverted_index.terms | 92 |
| abstract_inverted_index.where | 163 |
| abstract_inverted_index.which | 71, 107 |
| abstract_inverted_index.(LLMs) | 7 |
| abstract_inverted_index.E2URec | 140, 178, 187 |
| abstract_inverted_index.LLMRec | 24, 36, 64, 90 |
| abstract_inverted_index.always | 114 |
| abstract_inverted_index.arises | 25 |
| abstract_inverted_index.costly | 109 |
| abstract_inverted_index.during | 119 |
| abstract_inverted_index.forget | 67, 190 |
| abstract_inverted_index.impact | 115 |
| abstract_inverted_index.method | 135 |
| abstract_inverted_index.models | 6 |
| abstract_inverted_index.source | 198 |
| abstract_inverted_index.tuning | 43 |
| abstract_inverted_index.LLMRec, | 106 |
| abstract_inverted_index.crucial | 62 |
| abstract_inverted_index.methods | 99 |
| abstract_inverted_index.privacy | 55 |
| abstract_inverted_index.propose | 127 |
| abstract_inverted_index.protect | 53 |
| abstract_inverted_index.require | 100 |
| abstract_inverted_index.teacher | 167 |
| abstract_inverted_index.through | 41 |
| abstract_inverted_index.utility | 118 |
| abstract_inverted_index.without | 193 |
| abstract_inverted_index.Besides, | 112 |
| abstract_inverted_index.Existing | 97 |
| abstract_inverted_index.However, | 49 |
| abstract_inverted_index.acquires | 37 |
| abstract_inverted_index.billions | 102 |
| abstract_inverted_index.efficacy | 22 |
| abstract_inverted_index.enhances | 141 |
| abstract_inverted_index.improves | 154 |
| abstract_inverted_index.inherent | 33 |
| abstract_inverted_index.language | 5 |
| abstract_inverted_index.maintain | 165 |
| abstract_inverted_index.multiple | 166 |
| abstract_inverted_index.networks | 168 |
| abstract_inverted_index.optimize | 57 |
| abstract_inverted_index.process. | 122, 173 |
| abstract_inverted_index.proposed | 139 |
| abstract_inverted_index.referred | 74 |
| abstract_inverted_index.research | 13 |
| abstract_inverted_index.specific | 68, 191 |
| abstract_inverted_index.updating | 101, 146 |
| abstract_inverted_index.utility, | 58 |
| abstract_inverted_index.(LLMRec). | 20 |
| abstract_inverted_index.Extensive | 174 |
| abstract_inverted_index.affecting | 194 |
| abstract_inverted_index.baselines | 181 |
| abstract_inverted_index.datasets. | 185 |
| abstract_inverted_index.employing | 159 |
| abstract_inverted_index.generally | 73 |
| abstract_inverted_index.knowledge | 29 |
| abstract_inverted_index.promising | 12 |
| abstract_inverted_index.reasoning | 31 |
| abstract_inverted_index.additional | 150 |
| abstract_inverted_index.challenges | 88 |
| abstract_inverted_index.direction, | 14 |
| abstract_inverted_index.efficiency | 144 |
| abstract_inverted_index.framework, | 162 |
| abstract_inverted_index.leveraging | 16 |
| abstract_inverted_index.open-world | 28 |
| abstract_inverted_index.parameters | 104 |
| abstract_inverted_index.real-world | 184 |
| abstract_inverted_index.unlearning | 85, 98, 121, 143, 156, 172 |
| abstract_inverted_index.efficiently | 189 |
| abstract_inverted_index.experiments | 175 |
| abstract_inverted_index.instruction | 42 |
| abstract_inverted_index.interaction | 47 |
| abstract_inverted_index.outperforms | 179 |
| abstract_inverted_index.parameters, | 152 |
| abstract_inverted_index.significant | 1 |
| abstract_inverted_index.unlearning. | 78 |
| abstract_inverted_index.advancements | 2 |
| abstract_inverted_index.capabilities | 32, 40 |
| abstract_inverted_index.performance. | 196 |
| abstract_inverted_index.recommenders | 19 |
| abstract_inverted_index.Specifically, | 186 |
| abstract_inverted_index.effectiveness | 157 |
| abstract_inverted_index.intentionally | 66 |
| abstract_inverted_index.recommendation | 39, 77, 84, 195 |
| abstract_inverted_index.teacher-student | 161 |
| abstract_inverted_index.time-consuming. | 111 |
| abstract_inverted_index.\textbf{E2URec}, | 128 |
| abstract_inverted_index.state-of-the-art | 180 |
| abstract_inverted_index.LLM\underline{Rec}. | 137 |
| abstract_inverted_index.\textit{inefficiency} | 94 |
| abstract_inverted_index.\underline{E}ffective | 133 |
| abstract_inverted_index.\underline{E}fficient | 131 |
| abstract_inverted_index.\underline{U}nlearning | 134 |
| abstract_inverted_index.\textit{ineffectiveness}. | 96 |
| abstract_inverted_index.\url{https://github.com/justarter/E2URec}. | 202 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |