Towards Enabling Dynamic Convolution Neural Network Inference for Edge Intelligence Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2202.09461
Deep learning applications have achieved great success in numerous real-world applications. Deep learning models, especially Convolution Neural Networks (CNN) are often prototyped using FPGA because it offers high power efficiency and reconfigurability. The deployment of CNNs on FPGAs follows a design cycle that requires saving of model parameters in the on-chip memory during High-level synthesis (HLS). Recent advances in edge intelligence require CNN inference on edge network to increase throughput and reduce latency. To provide flexibility, dynamic parameter allocation to different mobile devices is required to implement either a predefined or defined on-the-fly CNN architecture. In this study, we present novel methodologies for dynamically streaming the model parameters at run-time to implement a traditional CNN architecture. We further propose a library-based approach to design scalable and dynamic distributed CNN inference on the fly leveraging partial-reconfiguration techniques, which is particularly suitable for resource-constrained edge devices. The proposed techniques are implemented on the Xilinx PYNQ-Z2 board to prove the concept by utilizing the LeNet-5 CNN model. The results show that the proposed methodologies are effective, with classification accuracy rates of 92%, 86%, and 94% respectively
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2202.09461
- https://arxiv.org/pdf/2202.09461
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226188219
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226188219Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2202.09461Digital Object Identifier
- Title
-
Towards Enabling Dynamic Convolution Neural Network Inference for Edge IntelligenceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-18Full publication date if available
- Authors
-
Adewale Adeyemo, Travis Sandefur, Tolulope A. Odetola, Syed Rafay HasanList of authors in order
- Landing page
-
https://arxiv.org/abs/2202.09461Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2202.09461Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2202.09461Direct OA link when available
- Concepts
-
Reconfigurability, Computer science, Control reconfiguration, Field-programmable gate array, Computer architecture, Inference, Deep learning, Edge device, Scalability, Convolutional neural network, Flexibility (engineering), Edge computing, Distributed computing, Enhanced Data Rates for GSM Evolution, Embedded system, Artificial intelligence, Computer engineering, Cloud computing, Database, Telecommunications, Operating system, Mathematics, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226188219 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2202.09461 |
| ids.doi | https://doi.org/10.48550/arxiv.2202.09461 |
| ids.openalex | https://openalex.org/W4226188219 |
| fwci | |
| type | preprint |
| title | Towards Enabling Dynamic Convolution Neural Network Inference for Edge Intelligence |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10502 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced Memory and Neural Computing |
| topics[1].id | https://openalex.org/T11992 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | CCD and CMOS Imaging Sensors |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9950000047683716 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780149590 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8725970983505249 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7302742 |
| concepts[0].display_name | Reconfigurability |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8263535499572754 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C119701452 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6624135375022888 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5165881 |
| concepts[2].display_name | Control reconfiguration |
| concepts[3].id | https://openalex.org/C42935608 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6451956629753113 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q190411 |
| concepts[3].display_name | Field-programmable gate array |
| concepts[4].id | https://openalex.org/C118524514 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5951545834541321 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q173212 |
| concepts[4].display_name | Computer architecture |
| concepts[5].id | https://openalex.org/C2776214188 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5932588577270508 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[5].display_name | Inference |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5578217506408691 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C138236772 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5535111427307129 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25098575 |
| concepts[7].display_name | Edge device |
| concepts[8].id | https://openalex.org/C48044578 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5509558916091919 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[8].display_name | Scalability |
| concepts[9].id | https://openalex.org/C81363708 |
| concepts[9].level | 2 |
| concepts[9].score | 0.543718695640564 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[9].display_name | Convolutional neural network |
| concepts[10].id | https://openalex.org/C2780598303 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4967935383319855 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q65921492 |
| concepts[10].display_name | Flexibility (engineering) |
| concepts[11].id | https://openalex.org/C2778456923 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4871039390563965 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5337692 |
| concepts[11].display_name | Edge computing |
| concepts[12].id | https://openalex.org/C120314980 |
| concepts[12].level | 1 |
| concepts[12].score | 0.46633219718933105 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[12].display_name | Distributed computing |
| concepts[13].id | https://openalex.org/C162307627 |
| concepts[13].level | 2 |
| concepts[13].score | 0.46481853723526 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[13].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[14].id | https://openalex.org/C149635348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.4343684911727905 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[14].display_name | Embedded system |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.4266264736652374 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C113775141 |
| concepts[16].level | 1 |
| concepts[16].score | 0.3816477656364441 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q428691 |
| concepts[16].display_name | Computer engineering |
| concepts[17].id | https://openalex.org/C79974875 |
| concepts[17].level | 2 |
| concepts[17].score | 0.17254868149757385 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[17].display_name | Cloud computing |
| concepts[18].id | https://openalex.org/C77088390 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[18].display_name | Database |
| concepts[19].id | https://openalex.org/C76155785 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[19].display_name | Telecommunications |
| concepts[20].id | https://openalex.org/C111919701 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[20].display_name | Operating system |
| concepts[21].id | https://openalex.org/C33923547 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[21].display_name | Mathematics |
| concepts[22].id | https://openalex.org/C105795698 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[22].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/reconfigurability |
| keywords[0].score | 0.8725970983505249 |
| keywords[0].display_name | Reconfigurability |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8263535499572754 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/control-reconfiguration |
| keywords[2].score | 0.6624135375022888 |
| keywords[2].display_name | Control reconfiguration |
| keywords[3].id | https://openalex.org/keywords/field-programmable-gate-array |
| keywords[3].score | 0.6451956629753113 |
| keywords[3].display_name | Field-programmable gate array |
| keywords[4].id | https://openalex.org/keywords/computer-architecture |
| keywords[4].score | 0.5951545834541321 |
| keywords[4].display_name | Computer architecture |
| keywords[5].id | https://openalex.org/keywords/inference |
| keywords[5].score | 0.5932588577270508 |
| keywords[5].display_name | Inference |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.5578217506408691 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/edge-device |
| keywords[7].score | 0.5535111427307129 |
| keywords[7].display_name | Edge device |
| keywords[8].id | https://openalex.org/keywords/scalability |
| keywords[8].score | 0.5509558916091919 |
| keywords[8].display_name | Scalability |
| keywords[9].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[9].score | 0.543718695640564 |
| keywords[9].display_name | Convolutional neural network |
| keywords[10].id | https://openalex.org/keywords/flexibility |
| keywords[10].score | 0.4967935383319855 |
| keywords[10].display_name | Flexibility (engineering) |
| keywords[11].id | https://openalex.org/keywords/edge-computing |
| keywords[11].score | 0.4871039390563965 |
| keywords[11].display_name | Edge computing |
| keywords[12].id | https://openalex.org/keywords/distributed-computing |
| keywords[12].score | 0.46633219718933105 |
| keywords[12].display_name | Distributed computing |
| keywords[13].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[13].score | 0.46481853723526 |
| keywords[13].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[14].id | https://openalex.org/keywords/embedded-system |
| keywords[14].score | 0.4343684911727905 |
| keywords[14].display_name | Embedded system |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.4266264736652374 |
| keywords[15].display_name | Artificial intelligence |
| keywords[16].id | https://openalex.org/keywords/computer-engineering |
| keywords[16].score | 0.3816477656364441 |
| keywords[16].display_name | Computer engineering |
| keywords[17].id | https://openalex.org/keywords/cloud-computing |
| keywords[17].score | 0.17254868149757385 |
| keywords[17].display_name | Cloud computing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2202.09461 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2202.09461 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2202.09461 |
| locations[1].id | doi:10.48550/arxiv.2202.09461 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2202.09461 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5029827645 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2897-1138 |
| authorships[0].author.display_name | Adewale Adeyemo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Adeyemo, Adewale |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5026893474 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Travis Sandefur |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sandefur, Travis |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5070802892 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6199-6249 |
| authorships[2].author.display_name | Tolulope A. Odetola |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Odetola, Tolulope A. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5034599612 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0183-8086 |
| authorships[3].author.display_name | Syed Rafay Hasan |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hasan, Syed Rafay |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2202.09461 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-05T00:00:00 |
| display_name | Towards Enabling Dynamic Convolution Neural Network Inference for Edge Intelligence |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10502 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced Memory and Neural Computing |
| related_works | https://openalex.org/W2152623100, https://openalex.org/W2096417281, https://openalex.org/W25204318, https://openalex.org/W2077035242, https://openalex.org/W2138895528, https://openalex.org/W3042643149, https://openalex.org/W2026481470, https://openalex.org/W1999203047, https://openalex.org/W3201977823, https://openalex.org/W2362203107 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2202.09461 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2202.09461 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2202.09461 |
| primary_location.id | pmh:oai:arXiv.org:2202.09461 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2202.09461 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2202.09461 |
| publication_date | 2022-02-18 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 39, 88, 112, 119 |
| abstract_inverted_index.In | 95 |
| abstract_inverted_index.To | 73 |
| abstract_inverted_index.We | 116 |
| abstract_inverted_index.at | 108 |
| abstract_inverted_index.by | 158 |
| abstract_inverted_index.in | 7, 48, 58 |
| abstract_inverted_index.is | 83, 137 |
| abstract_inverted_index.it | 25 |
| abstract_inverted_index.of | 34, 45, 177 |
| abstract_inverted_index.on | 36, 64, 130, 149 |
| abstract_inverted_index.or | 90 |
| abstract_inverted_index.to | 67, 79, 85, 110, 122, 154 |
| abstract_inverted_index.we | 98 |
| abstract_inverted_index.94% | 181 |
| abstract_inverted_index.CNN | 62, 93, 114, 128, 162 |
| abstract_inverted_index.The | 32, 144, 164 |
| abstract_inverted_index.and | 30, 70, 125, 180 |
| abstract_inverted_index.are | 19, 147, 171 |
| abstract_inverted_index.fly | 132 |
| abstract_inverted_index.for | 102, 140 |
| abstract_inverted_index.the | 49, 105, 131, 150, 156, 160, 168 |
| abstract_inverted_index.86%, | 179 |
| abstract_inverted_index.92%, | 178 |
| abstract_inverted_index.CNNs | 35 |
| abstract_inverted_index.Deep | 0, 11 |
| abstract_inverted_index.FPGA | 23 |
| abstract_inverted_index.edge | 59, 65, 142 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.high | 27 |
| abstract_inverted_index.show | 166 |
| abstract_inverted_index.that | 42, 167 |
| abstract_inverted_index.this | 96 |
| abstract_inverted_index.with | 173 |
| abstract_inverted_index.(CNN) | 18 |
| abstract_inverted_index.FPGAs | 37 |
| abstract_inverted_index.board | 153 |
| abstract_inverted_index.cycle | 41 |
| abstract_inverted_index.great | 5 |
| abstract_inverted_index.model | 46, 106 |
| abstract_inverted_index.novel | 100 |
| abstract_inverted_index.often | 20 |
| abstract_inverted_index.power | 28 |
| abstract_inverted_index.prove | 155 |
| abstract_inverted_index.rates | 176 |
| abstract_inverted_index.using | 22 |
| abstract_inverted_index.which | 136 |
| abstract_inverted_index.(HLS). | 55 |
| abstract_inverted_index.Neural | 16 |
| abstract_inverted_index.Recent | 56 |
| abstract_inverted_index.Xilinx | 151 |
| abstract_inverted_index.design | 40, 123 |
| abstract_inverted_index.during | 52 |
| abstract_inverted_index.either | 87 |
| abstract_inverted_index.memory | 51 |
| abstract_inverted_index.mobile | 81 |
| abstract_inverted_index.model. | 163 |
| abstract_inverted_index.offers | 26 |
| abstract_inverted_index.reduce | 71 |
| abstract_inverted_index.saving | 44 |
| abstract_inverted_index.study, | 97 |
| abstract_inverted_index.LeNet-5 | 161 |
| abstract_inverted_index.PYNQ-Z2 | 152 |
| abstract_inverted_index.because | 24 |
| abstract_inverted_index.concept | 157 |
| abstract_inverted_index.defined | 91 |
| abstract_inverted_index.devices | 82 |
| abstract_inverted_index.dynamic | 76, 126 |
| abstract_inverted_index.follows | 38 |
| abstract_inverted_index.further | 117 |
| abstract_inverted_index.models, | 13 |
| abstract_inverted_index.network | 66 |
| abstract_inverted_index.on-chip | 50 |
| abstract_inverted_index.present | 99 |
| abstract_inverted_index.propose | 118 |
| abstract_inverted_index.provide | 74 |
| abstract_inverted_index.require | 61 |
| abstract_inverted_index.results | 165 |
| abstract_inverted_index.success | 6 |
| abstract_inverted_index.Networks | 17 |
| abstract_inverted_index.accuracy | 175 |
| abstract_inverted_index.achieved | 4 |
| abstract_inverted_index.advances | 57 |
| abstract_inverted_index.approach | 121 |
| abstract_inverted_index.devices. | 143 |
| abstract_inverted_index.increase | 68 |
| abstract_inverted_index.latency. | 72 |
| abstract_inverted_index.learning | 1, 12 |
| abstract_inverted_index.numerous | 8 |
| abstract_inverted_index.proposed | 145, 169 |
| abstract_inverted_index.required | 84 |
| abstract_inverted_index.requires | 43 |
| abstract_inverted_index.run-time | 109 |
| abstract_inverted_index.scalable | 124 |
| abstract_inverted_index.suitable | 139 |
| abstract_inverted_index.different | 80 |
| abstract_inverted_index.implement | 86, 111 |
| abstract_inverted_index.inference | 63, 129 |
| abstract_inverted_index.parameter | 77 |
| abstract_inverted_index.streaming | 104 |
| abstract_inverted_index.synthesis | 54 |
| abstract_inverted_index.utilizing | 159 |
| abstract_inverted_index.High-level | 53 |
| abstract_inverted_index.allocation | 78 |
| abstract_inverted_index.deployment | 33 |
| abstract_inverted_index.effective, | 172 |
| abstract_inverted_index.efficiency | 29 |
| abstract_inverted_index.especially | 14 |
| abstract_inverted_index.leveraging | 133 |
| abstract_inverted_index.on-the-fly | 92 |
| abstract_inverted_index.parameters | 47, 107 |
| abstract_inverted_index.predefined | 89 |
| abstract_inverted_index.prototyped | 21 |
| abstract_inverted_index.real-world | 9 |
| abstract_inverted_index.techniques | 146 |
| abstract_inverted_index.throughput | 69 |
| abstract_inverted_index.Convolution | 15 |
| abstract_inverted_index.distributed | 127 |
| abstract_inverted_index.dynamically | 103 |
| abstract_inverted_index.implemented | 148 |
| abstract_inverted_index.techniques, | 135 |
| abstract_inverted_index.traditional | 113 |
| abstract_inverted_index.applications | 2 |
| abstract_inverted_index.flexibility, | 75 |
| abstract_inverted_index.intelligence | 60 |
| abstract_inverted_index.particularly | 138 |
| abstract_inverted_index.respectively | 182 |
| abstract_inverted_index.applications. | 10 |
| abstract_inverted_index.architecture. | 94, 115 |
| abstract_inverted_index.library-based | 120 |
| abstract_inverted_index.methodologies | 101, 170 |
| abstract_inverted_index.classification | 174 |
| abstract_inverted_index.reconfigurability. | 31 |
| abstract_inverted_index.resource-constrained | 141 |
| abstract_inverted_index.partial-reconfiguration | 134 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |