Towards Gaussian Processes for Automatic and Interpretable Anomaly Detection in Industry 4.0 Article Swipe
Fabian Berns
,
Markus Lange‐Hegermann
,
Christian Beecks
·
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.5220/0010130300870092
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.5220/0010130300870092
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5220/0010130300870092
- OA Status
- gold
- Cited By
- 7
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3103188483
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3103188483Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5220/0010130300870092Digital Object Identifier
- Title
-
Towards Gaussian Processes for Automatic and Interpretable Anomaly Detection in Industry 4.0Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Fabian Berns, Markus Lange‐Hegermann, Christian BeecksList of authors in order
- Landing page
-
https://doi.org/10.5220/0010130300870092Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5220/0010130300870092Direct OA link when available
- Concepts
-
Anomaly detection, Anomaly (physics), Gaussian process, Computer science, Artificial intelligence, Gaussian, Pattern recognition (psychology), Data mining, Chemistry, Physics, Computational chemistry, Condensed matter physicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 3, 2022: 3, 2020: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3103188483 |
|---|---|
| doi | https://doi.org/10.5220/0010130300870092 |
| ids.doi | https://doi.org/10.5220/0010130300870092 |
| ids.mag | 3103188483 |
| ids.openalex | https://openalex.org/W3103188483 |
| fwci | 1.02801684 |
| type | article |
| title | Towards Gaussian Processes for Automatic and Interpretable Anomaly Detection in Industry 4.0 |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 92 |
| biblio.first_page | 87 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9972000122070312 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9679999947547913 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| topics[2].id | https://openalex.org/T10876 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9620000123977661 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Fault Detection and Control Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C739882 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7318629622459412 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[0].display_name | Anomaly detection |
| concepts[1].id | https://openalex.org/C12997251 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5788953304290771 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q567560 |
| concepts[1].display_name | Anomaly (physics) |
| concepts[2].id | https://openalex.org/C61326573 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5556290149688721 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[2].display_name | Gaussian process |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5351473093032837 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5020580291748047 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C163716315 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4829687178134918 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[5].display_name | Gaussian |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3752578794956207 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3287461996078491 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C185592680 |
| concepts[8].level | 0 |
| concepts[8].score | 0.06998172402381897 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[8].display_name | Chemistry |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.06728947162628174 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C147597530 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q369472 |
| concepts[10].display_name | Computational chemistry |
| concepts[11].id | https://openalex.org/C26873012 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[11].display_name | Condensed matter physics |
| keywords[0].id | https://openalex.org/keywords/anomaly-detection |
| keywords[0].score | 0.7318629622459412 |
| keywords[0].display_name | Anomaly detection |
| keywords[1].id | https://openalex.org/keywords/anomaly |
| keywords[1].score | 0.5788953304290771 |
| keywords[1].display_name | Anomaly (physics) |
| keywords[2].id | https://openalex.org/keywords/gaussian-process |
| keywords[2].score | 0.5556290149688721 |
| keywords[2].display_name | Gaussian process |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5351473093032837 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5020580291748047 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/gaussian |
| keywords[5].score | 0.4829687178134918 |
| keywords[5].display_name | Gaussian |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.3752578794956207 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.3287461996078491 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/chemistry |
| keywords[8].score | 0.06998172402381897 |
| keywords[8].display_name | Chemistry |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.06728947162628174 |
| keywords[9].display_name | Physics |
| language | en |
| locations[0].id | doi:10.5220/0010130300870092 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the International Conference on Innovative Intelligent Industrial Production and Logistics |
| locations[0].landing_page_url | https://doi.org/10.5220/0010130300870092 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5051937514 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7033-3789 |
| authorships[0].author.display_name | Fabian Berns |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I22465464 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Münster, Germany, --- Select a Country --- |
| authorships[0].institutions[0].id | https://openalex.org/I22465464 |
| authorships[0].institutions[0].ror | https://ror.org/00pd74e08 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I22465464 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | University of Münster |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fabian Berns |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, University of Münster, Germany, --- Select a Country --- |
| authorships[1].author.id | https://openalex.org/A5048583024 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5327-4529 |
| authorships[1].author.display_name | Markus Lange‐Hegermann |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I5209920 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, OWL University of Applied Sciences and Arts, Lemgo, Germany, --- Select a Country --- |
| authorships[1].institutions[0].id | https://openalex.org/I5209920 |
| authorships[1].institutions[0].ror | https://ror.org/04eka8j06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I5209920 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Ostwestfalen-Lippe University of Applied Sciences and Arts |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Markus Lange-Hegermann |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, OWL University of Applied Sciences and Arts, Lemgo, Germany, --- Select a Country --- |
| authorships[2].author.id | https://openalex.org/A5039809923 |
| authorships[2].author.orcid | https://orcid.org/0009-0000-9028-629X |
| authorships[2].author.display_name | Christian Beecks |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I22465464 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Münster, Germany, --- Select a Country --- |
| authorships[2].institutions[0].id | https://openalex.org/I22465464 |
| authorships[2].institutions[0].ror | https://ror.org/00pd74e08 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I22465464 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | University of Münster |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Christian Beecks |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, University of Münster, Germany, --- Select a Country --- |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5220/0010130300870092 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards Gaussian Processes for Automatic and Interpretable Anomaly Detection in Industry 4.0 |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9972000122070312 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2076520961, https://openalex.org/W2042251007, https://openalex.org/W2984111956, https://openalex.org/W2065643612, https://openalex.org/W2110365568, https://openalex.org/W4311571903, https://openalex.org/W2130317780, https://openalex.org/W2063729131, https://openalex.org/W2619477556, https://openalex.org/W2405147214 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5220/0010130300870092 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the International Conference on Innovative Intelligent Industrial Production and Logistics |
| best_oa_location.landing_page_url | https://doi.org/10.5220/0010130300870092 |
| primary_location.id | doi:10.5220/0010130300870092 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the International Conference on Innovative Intelligent Industrial Production and Logistics |
| primary_location.landing_page_url | https://doi.org/10.5220/0010130300870092 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.81521941 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |