Towards Loss-Resilient Image Coding for Unstable Satellite Networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2501.11263
Geostationary Earth Orbit (GEO) satellite communication demonstrates significant advantages in emergency short burst data services. However, unstable satellite networks, particularly those with frequent packet loss, present a severe challenge to accurate image transmission. To address it, we propose a loss-resilient image coding approach that leverages end-to-end optimization in learned image compression (LIC). Our method builds on the channel-wise progressive coding framework, incorporating Spatial-Channel Rearrangement (SCR) on the encoder side and Mask Conditional Aggregation (MCA) on the decoder side to improve reconstruction quality with unpredictable errors. By integrating the Gilbert-Elliot model into the training process, we enhance the model's ability to generalize in real-world network conditions. Extensive evaluations show that our approach outperforms traditional and deep learning-based methods in terms of compression performance and stability under diverse packet loss, offering robust and efficient progressive transmission even in challenging environments. Code is available at https://github.com/NJUVISION/LossResilientLIC.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.11263
- https://arxiv.org/pdf/2501.11263
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406734990
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406734990Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.11263Digital Object Identifier
- Title
-
Towards Loss-Resilient Image Coding for Unstable Satellite NetworksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-20Full publication date if available
- Authors
-
Hongwei Sha, Muchen Dong, Qingming Luo, Ming‐De Lu, Hao Chen, Zhan MaList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.11263Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.11263Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.11263Direct OA link when available
- Concepts
-
Satellite image, Satellite, Coding (social sciences), Computer science, Image (mathematics), Telecommunications, Computer vision, Artificial intelligence, Mathematics, Engineering, Aerospace engineering, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406734990 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.11263 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.11263 |
| ids.openalex | https://openalex.org/W4406734990 |
| fwci | |
| type | preprint |
| title | Towards Loss-Resilient Image Coding for Unstable Satellite Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12923 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9465000033378601 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Digital Image Processing Techniques |
| topics[1].id | https://openalex.org/T12983 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9222999811172485 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Satellite Image Processing and Photogrammetry |
| topics[2].id | https://openalex.org/T12042 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9128000140190125 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Satellite Communication Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2985301230 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7120575904846191 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q725252 |
| concepts[0].display_name | Satellite image |
| concepts[1].id | https://openalex.org/C19269812 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5343375205993652 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q26540 |
| concepts[1].display_name | Satellite |
| concepts[2].id | https://openalex.org/C179518139 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5175449252128601 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5140297 |
| concepts[2].display_name | Coding (social sciences) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5054852962493896 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C115961682 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4757344722747803 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[4].display_name | Image (mathematics) |
| concepts[5].id | https://openalex.org/C76155785 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3654007315635681 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[5].display_name | Telecommunications |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.32489877939224243 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3214167654514313 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.19468820095062256 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.11671444773674011 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C146978453 |
| concepts[10].level | 1 |
| concepts[10].score | 0.09057587385177612 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[10].display_name | Aerospace engineering |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.08462029695510864 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/satellite-image |
| keywords[0].score | 0.7120575904846191 |
| keywords[0].display_name | Satellite image |
| keywords[1].id | https://openalex.org/keywords/satellite |
| keywords[1].score | 0.5343375205993652 |
| keywords[1].display_name | Satellite |
| keywords[2].id | https://openalex.org/keywords/coding |
| keywords[2].score | 0.5175449252128601 |
| keywords[2].display_name | Coding (social sciences) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5054852962493896 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/image |
| keywords[4].score | 0.4757344722747803 |
| keywords[4].display_name | Image (mathematics) |
| keywords[5].id | https://openalex.org/keywords/telecommunications |
| keywords[5].score | 0.3654007315635681 |
| keywords[5].display_name | Telecommunications |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.32489877939224243 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.3214167654514313 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.19468820095062256 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.11671444773674011 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/aerospace-engineering |
| keywords[10].score | 0.09057587385177612 |
| keywords[10].display_name | Aerospace engineering |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.08462029695510864 |
| keywords[11].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.11263 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.11263 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.11263 |
| locations[1].id | doi:10.48550/arxiv.2501.11263 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.11263 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101386482 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Hongwei Sha |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sha, Hongwei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100916178 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Muchen Dong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dong, Muchen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5056033605 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6725-9311 |
| authorships[2].author.display_name | Qingming Luo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Luo, Quanyou |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100460391 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9771-8144 |
| authorships[3].author.display_name | Ming‐De Lu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lu, Ming |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100353576 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6418-3761 |
| authorships[4].author.display_name | Hao Chen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chen, Hao |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101969273 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2377-9945 |
| authorships[5].author.display_name | Zhan Ma |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Ma, Zhan |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.11263 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards Loss-Resilient Image Coding for Unstable Satellite Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12923 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9465000033378601 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Digital Image Processing Techniques |
| related_works | https://openalex.org/W2520802852, https://openalex.org/W2095512555, https://openalex.org/W2743947972, https://openalex.org/W2371910819, https://openalex.org/W2086050356, https://openalex.org/W2364161837, https://openalex.org/W2219893072, https://openalex.org/W2528906239, https://openalex.org/W2529474223, https://openalex.org/W2386984706 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.11263 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.11263 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.11263 |
| primary_location.id | pmh:oai:arXiv.org:2501.11263 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.11263 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.11263 |
| publication_date | 2025-01-20 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 26, 38 |
| abstract_inverted_index.By | 85 |
| abstract_inverted_index.To | 33 |
| abstract_inverted_index.at | 141 |
| abstract_inverted_index.in | 9, 47, 101, 117, 135 |
| abstract_inverted_index.is | 139 |
| abstract_inverted_index.of | 119 |
| abstract_inverted_index.on | 55, 65, 74 |
| abstract_inverted_index.to | 29, 78, 99 |
| abstract_inverted_index.we | 36, 94 |
| abstract_inverted_index.Our | 52 |
| abstract_inverted_index.and | 69, 113, 122, 130 |
| abstract_inverted_index.it, | 35 |
| abstract_inverted_index.our | 109 |
| abstract_inverted_index.the | 56, 66, 75, 87, 91, 96 |
| abstract_inverted_index.Code | 138 |
| abstract_inverted_index.Mask | 70 |
| abstract_inverted_index.data | 13 |
| abstract_inverted_index.deep | 114 |
| abstract_inverted_index.even | 134 |
| abstract_inverted_index.into | 90 |
| abstract_inverted_index.show | 107 |
| abstract_inverted_index.side | 68, 77 |
| abstract_inverted_index.that | 43, 108 |
| abstract_inverted_index.with | 21, 82 |
| abstract_inverted_index.(GEO) | 3 |
| abstract_inverted_index.(MCA) | 73 |
| abstract_inverted_index.(SCR) | 64 |
| abstract_inverted_index.Earth | 1 |
| abstract_inverted_index.Orbit | 2 |
| abstract_inverted_index.burst | 12 |
| abstract_inverted_index.image | 31, 40, 49 |
| abstract_inverted_index.loss, | 24, 127 |
| abstract_inverted_index.model | 89 |
| abstract_inverted_index.short | 11 |
| abstract_inverted_index.terms | 118 |
| abstract_inverted_index.those | 20 |
| abstract_inverted_index.under | 124 |
| abstract_inverted_index.(LIC). | 51 |
| abstract_inverted_index.builds | 54 |
| abstract_inverted_index.coding | 41, 59 |
| abstract_inverted_index.method | 53 |
| abstract_inverted_index.packet | 23, 126 |
| abstract_inverted_index.robust | 129 |
| abstract_inverted_index.severe | 27 |
| abstract_inverted_index.ability | 98 |
| abstract_inverted_index.address | 34 |
| abstract_inverted_index.decoder | 76 |
| abstract_inverted_index.diverse | 125 |
| abstract_inverted_index.encoder | 67 |
| abstract_inverted_index.enhance | 95 |
| abstract_inverted_index.errors. | 84 |
| abstract_inverted_index.improve | 79 |
| abstract_inverted_index.learned | 48 |
| abstract_inverted_index.methods | 116 |
| abstract_inverted_index.model's | 97 |
| abstract_inverted_index.network | 103 |
| abstract_inverted_index.present | 25 |
| abstract_inverted_index.propose | 37 |
| abstract_inverted_index.quality | 81 |
| abstract_inverted_index.However, | 15 |
| abstract_inverted_index.accurate | 30 |
| abstract_inverted_index.approach | 42, 110 |
| abstract_inverted_index.frequent | 22 |
| abstract_inverted_index.offering | 128 |
| abstract_inverted_index.process, | 93 |
| abstract_inverted_index.training | 92 |
| abstract_inverted_index.unstable | 16 |
| abstract_inverted_index.Extensive | 105 |
| abstract_inverted_index.available | 140 |
| abstract_inverted_index.challenge | 28 |
| abstract_inverted_index.efficient | 131 |
| abstract_inverted_index.emergency | 10 |
| abstract_inverted_index.leverages | 44 |
| abstract_inverted_index.networks, | 18 |
| abstract_inverted_index.satellite | 4, 17 |
| abstract_inverted_index.services. | 14 |
| abstract_inverted_index.stability | 123 |
| abstract_inverted_index.advantages | 8 |
| abstract_inverted_index.end-to-end | 45 |
| abstract_inverted_index.framework, | 60 |
| abstract_inverted_index.generalize | 100 |
| abstract_inverted_index.real-world | 102 |
| abstract_inverted_index.Aggregation | 72 |
| abstract_inverted_index.Conditional | 71 |
| abstract_inverted_index.challenging | 136 |
| abstract_inverted_index.compression | 50, 120 |
| abstract_inverted_index.conditions. | 104 |
| abstract_inverted_index.evaluations | 106 |
| abstract_inverted_index.integrating | 86 |
| abstract_inverted_index.outperforms | 111 |
| abstract_inverted_index.performance | 121 |
| abstract_inverted_index.progressive | 58, 132 |
| abstract_inverted_index.significant | 7 |
| abstract_inverted_index.traditional | 112 |
| abstract_inverted_index.channel-wise | 57 |
| abstract_inverted_index.demonstrates | 6 |
| abstract_inverted_index.optimization | 46 |
| abstract_inverted_index.particularly | 19 |
| abstract_inverted_index.transmission | 133 |
| abstract_inverted_index.Geostationary | 0 |
| abstract_inverted_index.Rearrangement | 63 |
| abstract_inverted_index.communication | 5 |
| abstract_inverted_index.environments. | 137 |
| abstract_inverted_index.incorporating | 61 |
| abstract_inverted_index.transmission. | 32 |
| abstract_inverted_index.unpredictable | 83 |
| abstract_inverted_index.Gilbert-Elliot | 88 |
| abstract_inverted_index.learning-based | 115 |
| abstract_inverted_index.loss-resilient | 39 |
| abstract_inverted_index.reconstruction | 80 |
| abstract_inverted_index.Spatial-Channel | 62 |
| abstract_inverted_index.https://github.com/NJUVISION/LossResilientLIC. | 142 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |