Towards Machine Learning Based Text Categorization in the Financial Domain Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/citds62610.2024.10791384
Despite the widespread research on text categorization in various Natural Language Processing (NLP) domains, there exists a noticeable void concerning its application to financial data. This study addresses this gap by employing pre-trained Bidirectional Encoder Representations from Trans-formers (BERT) models, fine-tuned specifically for the financial domain, to categorize newspaper articles focusing on financial topics. This is the first time that the dataset presented in this paper has been used. Further we evaluate the efficacy of established models in sentiment prediction using these rather long texts. Finally, we delve into the intricacies of company-specific sentiment and relevance prediction within these articles, acknowl-edging the prevalence of multiple companies being mentioned in one article, thus contributing to a more nuanced understanding of text analysis in the financial sector.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/citds62610.2024.10791384
- OA Status
- green
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405491603
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405491603Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/citds62610.2024.10791384Digital Object Identifier
- Title
-
Towards Machine Learning Based Text Categorization in the Financial DomainWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-26Full publication date if available
- Authors
-
Frederic Voigt, José Miranda, Keshav Dahal, Qi Wang, Kai von Luck, Peer StelldingerList of authors in order
- Landing page
-
https://doi.org/10.1109/citds62610.2024.10791384Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://research-portal.uws.ac.uk/en/publications/22e29d03-5c9d-4e30-8dc5-fe85e20e6d6eDirect OA link when available
- Concepts
-
Categorization, Computer science, Domain (mathematical analysis), Artificial intelligence, Text categorization, Natural language processing, Machine learning, Mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405491603 |
|---|---|
| doi | https://doi.org/10.1109/citds62610.2024.10791384 |
| ids.doi | https://doi.org/10.1109/citds62610.2024.10791384 |
| ids.openalex | https://openalex.org/W4405491603 |
| fwci | 0.0 |
| type | article |
| title | Towards Machine Learning Based Text Categorization in the Financial Domain |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 6 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11326 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.8187000155448914 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Stock Market Forecasting Methods |
| topics[1].id | https://openalex.org/T11995 |
| topics[1].field.id | https://openalex.org/fields/14 |
| topics[1].field.display_name | Business, Management and Accounting |
| topics[1].score | 0.765999972820282 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1404 |
| topics[1].subfield.display_name | Management Information Systems |
| topics[1].display_name | FinTech, Crowdfunding, Digital Finance |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C94124525 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7523626089096069 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q912550 |
| concepts[0].display_name | Categorization |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7054296135902405 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C36503486 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5927321910858154 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[2].display_name | Domain (mathematical analysis) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5200281143188477 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2986744138 |
| concepts[4].level | 3 |
| concepts[4].score | 0.49575886130332947 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q302088 |
| concepts[4].display_name | Text categorization |
| concepts[5].id | https://openalex.org/C204321447 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4585215449333191 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[5].display_name | Natural language processing |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.40215569734573364 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.06819653511047363 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C134306372 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[8].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/categorization |
| keywords[0].score | 0.7523626089096069 |
| keywords[0].display_name | Categorization |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7054296135902405 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/domain |
| keywords[2].score | 0.5927321910858154 |
| keywords[2].display_name | Domain (mathematical analysis) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5200281143188477 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/text-categorization |
| keywords[4].score | 0.49575886130332947 |
| keywords[4].display_name | Text categorization |
| keywords[5].id | https://openalex.org/keywords/natural-language-processing |
| keywords[5].score | 0.4585215449333191 |
| keywords[5].display_name | Natural language processing |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.40215569734573364 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.06819653511047363 |
| keywords[7].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1109/citds62610.2024.10791384 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2024 IEEE 3rd Conference on Information Technology and Data Science (CITDS) |
| locations[0].landing_page_url | https://doi.org/10.1109/citds62610.2024.10791384 |
| locations[1].id | pmh:oai:pure.atira.dk:publications/22e29d03-5c9d-4e30-8dc5-fe85e20e6d6e |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400216 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Research Portal (King's College London) |
| locations[1].source.host_organization | https://openalex.org/I183935753 |
| locations[1].source.host_organization_name | King's College London |
| locations[1].source.host_organization_lineage | https://openalex.org/I183935753 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | contributionToPeriodical |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Voigt, F, Alcaraz Calero, J, Dahal, K, Wang, Q & Von Luck, K 2024, Towards machine learning based text categorization in the financial domain. in 2024 IEEE 3rd Conference on Information Technology and Data Science (CITDS)., 10791384, IEEE. https://doi.org/10.1109/CITDS62610.2024.10791384 |
| locations[1].landing_page_url | https://research-portal.uws.ac.uk/en/publications/22e29d03-5c9d-4e30-8dc5-fe85e20e6d6e |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5099517572 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-5948-484X |
| authorships[0].author.display_name | Frederic Voigt |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I159176309, https://openalex.org/I70451448 |
| authorships[0].affiliations[0].raw_affiliation_string | University of the West of Scotland/Hamburg University of Applied Sciences,Department of Computer Science,Hamburg,Germany |
| authorships[0].institutions[0].id | https://openalex.org/I70451448 |
| authorships[0].institutions[0].ror | https://ror.org/00fkqwx76 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I70451448 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | HAW Hamburg |
| authorships[0].institutions[1].id | https://openalex.org/I159176309 |
| authorships[0].institutions[1].ror | https://ror.org/00g30e956 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I159176309 |
| authorships[0].institutions[1].country_code | DE |
| authorships[0].institutions[1].display_name | Universität Hamburg |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Frederic Voigt |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of the West of Scotland/Hamburg University of Applied Sciences,Department of Computer Science,Hamburg,Germany |
| authorships[1].author.id | https://openalex.org/A5069443360 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7275-4616 |
| authorships[1].author.display_name | José Miranda |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I868834043 |
| authorships[1].affiliations[0].raw_affiliation_string | University of the West of Scotland, School of Computing,Engineering & Physical Sciences,Paisley,Scotland |
| authorships[1].institutions[0].id | https://openalex.org/I868834043 |
| authorships[1].institutions[0].ror | https://ror.org/04w3d2v20 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I868834043 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of the West of Scotland |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jose Alcarez Calero |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of the West of Scotland, School of Computing,Engineering & Physical Sciences,Paisley,Scotland |
| authorships[2].author.id | https://openalex.org/A5046025661 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1789-893X |
| authorships[2].author.display_name | Keshav Dahal |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I868834043 |
| authorships[2].affiliations[0].raw_affiliation_string | University of the West of Scotland, School of Computing,Engineering & Physical Sciences,Paisley,Scotland |
| authorships[2].institutions[0].id | https://openalex.org/I868834043 |
| authorships[2].institutions[0].ror | https://ror.org/04w3d2v20 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I868834043 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of the West of Scotland |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Keshav Dahal |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of the West of Scotland, School of Computing,Engineering & Physical Sciences,Paisley,Scotland |
| authorships[3].author.id | https://openalex.org/A5100341330 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7764-9858 |
| authorships[3].author.display_name | Qi Wang |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I868834043 |
| authorships[3].affiliations[0].raw_affiliation_string | University of the West of Scotland, School of Computing,Engineering & Physical Sciences,Paisley,Scotland |
| authorships[3].institutions[0].id | https://openalex.org/I868834043 |
| authorships[3].institutions[0].ror | https://ror.org/04w3d2v20 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I868834043 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of the West of Scotland |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qi Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of the West of Scotland, School of Computing,Engineering & Physical Sciences,Paisley,Scotland |
| authorships[4].author.id | https://openalex.org/A5031878637 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5177-3025 |
| authorships[4].author.display_name | Kai von Luck |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I159176309, https://openalex.org/I70451448 |
| authorships[4].affiliations[0].raw_affiliation_string | Hamburg University of Applied Sciences,Department of Computer Science,Hamburg,Germany |
| authorships[4].institutions[0].id | https://openalex.org/I70451448 |
| authorships[4].institutions[0].ror | https://ror.org/00fkqwx76 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I70451448 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | HAW Hamburg |
| authorships[4].institutions[1].id | https://openalex.org/I159176309 |
| authorships[4].institutions[1].ror | https://ror.org/00g30e956 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I159176309 |
| authorships[4].institutions[1].country_code | DE |
| authorships[4].institutions[1].display_name | Universität Hamburg |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kai Von Luck |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Hamburg University of Applied Sciences,Department of Computer Science,Hamburg,Germany |
| authorships[5].author.id | https://openalex.org/A5057113537 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8079-2797 |
| authorships[5].author.display_name | Peer Stelldinger |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I159176309, https://openalex.org/I70451448 |
| authorships[5].affiliations[0].raw_affiliation_string | Hamburg University of Applied Sciences,Department of Computer Science,Hamburg,Germany |
| authorships[5].institutions[0].id | https://openalex.org/I70451448 |
| authorships[5].institutions[0].ror | https://ror.org/00fkqwx76 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I70451448 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | HAW Hamburg |
| authorships[5].institutions[1].id | https://openalex.org/I159176309 |
| authorships[5].institutions[1].ror | https://ror.org/00g30e956 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I159176309 |
| authorships[5].institutions[1].country_code | DE |
| authorships[5].institutions[1].display_name | Universität Hamburg |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Peer Stelldinger |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Hamburg University of Applied Sciences,Department of Computer Science,Hamburg,Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://research-portal.uws.ac.uk/en/publications/22e29d03-5c9d-4e30-8dc5-fe85e20e6d6e |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards Machine Learning Based Text Categorization in the Financial Domain |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11326 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.8187000155448914 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Stock Market Forecasting Methods |
| related_works | https://openalex.org/W2360898036, https://openalex.org/W2390857744, https://openalex.org/W2390698788, https://openalex.org/W2133651098, https://openalex.org/W2078570174, https://openalex.org/W2383063829, https://openalex.org/W2138922887, https://openalex.org/W2035261173, https://openalex.org/W2106892947, https://openalex.org/W2237299843 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:pure.atira.dk:publications/22e29d03-5c9d-4e30-8dc5-fe85e20e6d6e |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400216 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Portal (King's College London) |
| best_oa_location.source.host_organization | https://openalex.org/I183935753 |
| best_oa_location.source.host_organization_name | King's College London |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I183935753 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | contributionToPeriodical |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Voigt, F, Alcaraz Calero, J, Dahal, K, Wang, Q & Von Luck, K 2024, Towards machine learning based text categorization in the financial domain. in 2024 IEEE 3rd Conference on Information Technology and Data Science (CITDS)., 10791384, IEEE. https://doi.org/10.1109/CITDS62610.2024.10791384 |
| best_oa_location.landing_page_url | https://research-portal.uws.ac.uk/en/publications/22e29d03-5c9d-4e30-8dc5-fe85e20e6d6e |
| primary_location.id | doi:10.1109/citds62610.2024.10791384 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2024 IEEE 3rd Conference on Information Technology and Data Science (CITDS) |
| primary_location.landing_page_url | https://doi.org/10.1109/citds62610.2024.10791384 |
| publication_date | 2024-08-26 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4400037165, https://openalex.org/W2195027038, https://openalex.org/W2911971986, https://openalex.org/W4298110867, https://openalex.org/W3043424630, https://openalex.org/W6739901393, https://openalex.org/W6697136110, https://openalex.org/W3139035125, https://openalex.org/W2753259282, https://openalex.org/W2038466413, https://openalex.org/W1991018417, https://openalex.org/W1546425147, https://openalex.org/W4393153055, https://openalex.org/W3196503391, https://openalex.org/W2973750772, https://openalex.org/W4283791273, https://openalex.org/W4387373347, https://openalex.org/W4372324631, https://openalex.org/W4315853251, https://openalex.org/W2980708516, https://openalex.org/W6780227653, https://openalex.org/W6767182473, https://openalex.org/W3035101152, https://openalex.org/W6752926069, https://openalex.org/W2963691377, https://openalex.org/W2616247523, https://openalex.org/W4230405732, https://openalex.org/W4287073370, https://openalex.org/W1484391353, https://openalex.org/W4389115219, https://openalex.org/W4365799947, https://openalex.org/W3102564565, https://openalex.org/W4385245566, https://openalex.org/W2913602408, https://openalex.org/W3037252472, https://openalex.org/W4300485781 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 16, 114 |
| abstract_inverted_index.by | 30 |
| abstract_inverted_index.in | 7, 63, 77, 108, 121 |
| abstract_inverted_index.is | 55 |
| abstract_inverted_index.of | 74, 91, 103, 118 |
| abstract_inverted_index.on | 4, 51 |
| abstract_inverted_index.to | 22, 46, 113 |
| abstract_inverted_index.we | 70, 86 |
| abstract_inverted_index.and | 94 |
| abstract_inverted_index.for | 42 |
| abstract_inverted_index.gap | 29 |
| abstract_inverted_index.has | 66 |
| abstract_inverted_index.its | 20 |
| abstract_inverted_index.one | 109 |
| abstract_inverted_index.the | 1, 43, 56, 60, 72, 89, 101, 122 |
| abstract_inverted_index.This | 25, 54 |
| abstract_inverted_index.been | 67 |
| abstract_inverted_index.from | 36 |
| abstract_inverted_index.into | 88 |
| abstract_inverted_index.long | 83 |
| abstract_inverted_index.more | 115 |
| abstract_inverted_index.text | 5, 119 |
| abstract_inverted_index.that | 59 |
| abstract_inverted_index.this | 28, 64 |
| abstract_inverted_index.thus | 111 |
| abstract_inverted_index.time | 58 |
| abstract_inverted_index.void | 18 |
| abstract_inverted_index.(NLP) | 12 |
| abstract_inverted_index.being | 106 |
| abstract_inverted_index.data. | 24 |
| abstract_inverted_index.delve | 87 |
| abstract_inverted_index.first | 57 |
| abstract_inverted_index.paper | 65 |
| abstract_inverted_index.study | 26 |
| abstract_inverted_index.there | 14 |
| abstract_inverted_index.these | 81, 98 |
| abstract_inverted_index.used. | 68 |
| abstract_inverted_index.using | 80 |
| abstract_inverted_index.(BERT) | 38 |
| abstract_inverted_index.exists | 15 |
| abstract_inverted_index.models | 76 |
| abstract_inverted_index.rather | 82 |
| abstract_inverted_index.texts. | 84 |
| abstract_inverted_index.within | 97 |
| abstract_inverted_index.Despite | 0 |
| abstract_inverted_index.Encoder | 34 |
| abstract_inverted_index.Further | 69 |
| abstract_inverted_index.Natural | 9 |
| abstract_inverted_index.dataset | 61 |
| abstract_inverted_index.domain, | 45 |
| abstract_inverted_index.models, | 39 |
| abstract_inverted_index.nuanced | 116 |
| abstract_inverted_index.sector. | 124 |
| abstract_inverted_index.topics. | 53 |
| abstract_inverted_index.various | 8 |
| abstract_inverted_index.Finally, | 85 |
| abstract_inverted_index.Language | 10 |
| abstract_inverted_index.analysis | 120 |
| abstract_inverted_index.article, | 110 |
| abstract_inverted_index.articles | 49 |
| abstract_inverted_index.domains, | 13 |
| abstract_inverted_index.efficacy | 73 |
| abstract_inverted_index.evaluate | 71 |
| abstract_inverted_index.focusing | 50 |
| abstract_inverted_index.multiple | 104 |
| abstract_inverted_index.research | 3 |
| abstract_inverted_index.addresses | 27 |
| abstract_inverted_index.articles, | 99 |
| abstract_inverted_index.companies | 105 |
| abstract_inverted_index.employing | 31 |
| abstract_inverted_index.financial | 23, 44, 52, 123 |
| abstract_inverted_index.mentioned | 107 |
| abstract_inverted_index.newspaper | 48 |
| abstract_inverted_index.presented | 62 |
| abstract_inverted_index.relevance | 95 |
| abstract_inverted_index.sentiment | 78, 93 |
| abstract_inverted_index.Processing | 11 |
| abstract_inverted_index.categorize | 47 |
| abstract_inverted_index.concerning | 19 |
| abstract_inverted_index.fine-tuned | 40 |
| abstract_inverted_index.noticeable | 17 |
| abstract_inverted_index.prediction | 79, 96 |
| abstract_inverted_index.prevalence | 102 |
| abstract_inverted_index.widespread | 2 |
| abstract_inverted_index.application | 21 |
| abstract_inverted_index.established | 75 |
| abstract_inverted_index.intricacies | 90 |
| abstract_inverted_index.pre-trained | 32 |
| abstract_inverted_index.contributing | 112 |
| abstract_inverted_index.specifically | 41 |
| abstract_inverted_index.Bidirectional | 33 |
| abstract_inverted_index.Trans-formers | 37 |
| abstract_inverted_index.understanding | 117 |
| abstract_inverted_index.acknowl-edging | 100 |
| abstract_inverted_index.categorization | 6 |
| abstract_inverted_index.Representations | 35 |
| abstract_inverted_index.company-specific | 92 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.34327404 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |