Towards More Accurate Fake Detection on Images Generated from Advanced Generative and Neural Rendering Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.08642
The remarkable progress in neural-network-driven visual data generation, especially with neural rendering techniques like Neural Radiance Fields and 3D Gaussian splatting, offers a powerful alternative to GANs and diffusion models. These methods can produce high-fidelity images and lifelike avatars, highlighting the need for robust detection methods. In response, an unsupervised training technique is proposed that enables the model to extract comprehensive features from the Fourier spectrum magnitude, thereby overcoming the challenges of reconstructing the spectrum due to its centrosymmetric properties. By leveraging the spectral domain and dynamically combining it with spatial domain information, we create a robust multimodal detector that demonstrates superior generalization capabilities in identifying challenging synthetic images generated by the latest image synthesis techniques. To address the absence of a 3D neural rendering-based fake image database, we develop a comprehensive database that includes images generated by diverse neural rendering techniques, providing a robust foundation for evaluating and advancing detection methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.08642
- https://arxiv.org/pdf/2411.08642
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404407873
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404407873Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.08642Digital Object Identifier
- Title
-
Towards More Accurate Fake Detection on Images Generated from Advanced Generative and Neural Rendering ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-13Full publication date if available
- Authors
-
Cheng‐Di Dong, B. V. K. Vijaya Kumar, Zhenyu Zhou, Ajay KumarList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.08642Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.08642Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.08642Direct OA link when available
- Concepts
-
Rendering (computer graphics), Generative grammar, Artificial intelligence, Computer science, Generative model, Computer vision, Pattern recognition (psychology)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404407873 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.08642 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.08642 |
| ids.openalex | https://openalex.org/W4404407873 |
| fwci | |
| type | preprint |
| title | Towards More Accurate Fake Detection on Images Generated from Advanced Generative and Neural Rendering Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12357 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Digital Media Forensic Detection |
| topics[1].id | https://openalex.org/T10775 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9858999848365784 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[2].id | https://openalex.org/T10388 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9404000043869019 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Steganography and Watermarking Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C205711294 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7693322896957397 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q176953 |
| concepts[0].display_name | Rendering (computer graphics) |
| concepts[1].id | https://openalex.org/C39890363 |
| concepts[1].level | 2 |
| concepts[1].score | 0.642870306968689 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[1].display_name | Generative grammar |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5884318947792053 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5845799446105957 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C167966045 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4855015277862549 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[4].display_name | Generative model |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.444438099861145 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.34930771589279175 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| keywords[0].id | https://openalex.org/keywords/rendering |
| keywords[0].score | 0.7693322896957397 |
| keywords[0].display_name | Rendering (computer graphics) |
| keywords[1].id | https://openalex.org/keywords/generative-grammar |
| keywords[1].score | 0.642870306968689 |
| keywords[1].display_name | Generative grammar |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5884318947792053 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5845799446105957 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/generative-model |
| keywords[4].score | 0.4855015277862549 |
| keywords[4].display_name | Generative model |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.444438099861145 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.34930771589279175 |
| keywords[6].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.08642 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.08642 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.08642 |
| locations[1].id | doi:10.48550/arxiv.2411.08642 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.08642 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5015918478 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4758-3739 |
| authorships[0].author.display_name | Cheng‐Di Dong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dong, Chengdong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5055345322 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7126-6381 |
| authorships[1].author.display_name | B. V. K. Vijaya Kumar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bhagavatula, Vijayakumar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5029562156 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7453-5759 |
| authorships[2].author.display_name | Zhenyu Zhou |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhou, Zhenyu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5104027966 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ajay Kumar |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Kumar, Ajay |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.08642 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-11-16T00:00:00 |
| display_name | Towards More Accurate Fake Detection on Images Generated from Advanced Generative and Neural Rendering Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12357 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Digital Media Forensic Detection |
| related_works | https://openalex.org/W4365211920, https://openalex.org/W3014948380, https://openalex.org/W4380551139, https://openalex.org/W4317695495, https://openalex.org/W4395044357, https://openalex.org/W4287117424, https://openalex.org/W4387506531, https://openalex.org/W2087346071, https://openalex.org/W2967848559, https://openalex.org/W4299831724 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.08642 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.08642 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.08642 |
| primary_location.id | pmh:oai:arXiv.org:2411.08642 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.08642 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.08642 |
| publication_date | 2024-11-13 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 22, 95, 121, 130, 143 |
| abstract_inverted_index.3D | 18, 122 |
| abstract_inverted_index.By | 80 |
| abstract_inverted_index.In | 46 |
| abstract_inverted_index.To | 116 |
| abstract_inverted_index.an | 48 |
| abstract_inverted_index.by | 110, 137 |
| abstract_inverted_index.in | 3, 104 |
| abstract_inverted_index.is | 52 |
| abstract_inverted_index.it | 88 |
| abstract_inverted_index.of | 71, 120 |
| abstract_inverted_index.to | 25, 58, 76 |
| abstract_inverted_index.we | 93, 128 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 17, 27, 36, 85, 148 |
| abstract_inverted_index.can | 32 |
| abstract_inverted_index.due | 75 |
| abstract_inverted_index.for | 42, 146 |
| abstract_inverted_index.its | 77 |
| abstract_inverted_index.the | 40, 56, 63, 69, 73, 82, 111, 118 |
| abstract_inverted_index.GANs | 26 |
| abstract_inverted_index.data | 6 |
| abstract_inverted_index.fake | 125 |
| abstract_inverted_index.from | 62 |
| abstract_inverted_index.like | 13 |
| abstract_inverted_index.need | 41 |
| abstract_inverted_index.that | 54, 99, 133 |
| abstract_inverted_index.with | 9, 89 |
| abstract_inverted_index.These | 30 |
| abstract_inverted_index.image | 113, 126 |
| abstract_inverted_index.model | 57 |
| abstract_inverted_index.Fields | 16 |
| abstract_inverted_index.Neural | 14 |
| abstract_inverted_index.create | 94 |
| abstract_inverted_index.domain | 84, 91 |
| abstract_inverted_index.images | 35, 108, 135 |
| abstract_inverted_index.latest | 112 |
| abstract_inverted_index.neural | 10, 123, 139 |
| abstract_inverted_index.offers | 21 |
| abstract_inverted_index.robust | 43, 96, 144 |
| abstract_inverted_index.visual | 5 |
| abstract_inverted_index.Fourier | 64 |
| abstract_inverted_index.absence | 119 |
| abstract_inverted_index.address | 117 |
| abstract_inverted_index.develop | 129 |
| abstract_inverted_index.diverse | 138 |
| abstract_inverted_index.enables | 55 |
| abstract_inverted_index.extract | 59 |
| abstract_inverted_index.methods | 31 |
| abstract_inverted_index.models. | 29 |
| abstract_inverted_index.produce | 33 |
| abstract_inverted_index.spatial | 90 |
| abstract_inverted_index.thereby | 67 |
| abstract_inverted_index.Gaussian | 19 |
| abstract_inverted_index.Radiance | 15 |
| abstract_inverted_index.avatars, | 38 |
| abstract_inverted_index.database | 132 |
| abstract_inverted_index.detector | 98 |
| abstract_inverted_index.features | 61 |
| abstract_inverted_index.includes | 134 |
| abstract_inverted_index.lifelike | 37 |
| abstract_inverted_index.methods. | 45, 151 |
| abstract_inverted_index.powerful | 23 |
| abstract_inverted_index.progress | 2 |
| abstract_inverted_index.proposed | 53 |
| abstract_inverted_index.spectral | 83 |
| abstract_inverted_index.spectrum | 65, 74 |
| abstract_inverted_index.superior | 101 |
| abstract_inverted_index.training | 50 |
| abstract_inverted_index.advancing | 149 |
| abstract_inverted_index.combining | 87 |
| abstract_inverted_index.database, | 127 |
| abstract_inverted_index.detection | 44, 150 |
| abstract_inverted_index.diffusion | 28 |
| abstract_inverted_index.generated | 109, 136 |
| abstract_inverted_index.providing | 142 |
| abstract_inverted_index.rendering | 11, 140 |
| abstract_inverted_index.response, | 47 |
| abstract_inverted_index.synthesis | 114 |
| abstract_inverted_index.synthetic | 107 |
| abstract_inverted_index.technique | 51 |
| abstract_inverted_index.challenges | 70 |
| abstract_inverted_index.especially | 8 |
| abstract_inverted_index.evaluating | 147 |
| abstract_inverted_index.foundation | 145 |
| abstract_inverted_index.leveraging | 81 |
| abstract_inverted_index.magnitude, | 66 |
| abstract_inverted_index.multimodal | 97 |
| abstract_inverted_index.overcoming | 68 |
| abstract_inverted_index.remarkable | 1 |
| abstract_inverted_index.splatting, | 20 |
| abstract_inverted_index.techniques | 12 |
| abstract_inverted_index.alternative | 24 |
| abstract_inverted_index.challenging | 106 |
| abstract_inverted_index.dynamically | 86 |
| abstract_inverted_index.generation, | 7 |
| abstract_inverted_index.identifying | 105 |
| abstract_inverted_index.properties. | 79 |
| abstract_inverted_index.techniques, | 141 |
| abstract_inverted_index.techniques. | 115 |
| abstract_inverted_index.capabilities | 103 |
| abstract_inverted_index.demonstrates | 100 |
| abstract_inverted_index.highlighting | 39 |
| abstract_inverted_index.information, | 92 |
| abstract_inverted_index.unsupervised | 49 |
| abstract_inverted_index.comprehensive | 60, 131 |
| abstract_inverted_index.high-fidelity | 34 |
| abstract_inverted_index.generalization | 102 |
| abstract_inverted_index.reconstructing | 72 |
| abstract_inverted_index.centrosymmetric | 78 |
| abstract_inverted_index.rendering-based | 124 |
| abstract_inverted_index.neural-network-driven | 4 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |