Towards Multi-dimensional Explanation Alignment for Medical Classification Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.21494
The lack of interpretability in the field of medical image analysis has significant ethical and legal implications. Existing interpretable methods in this domain encounter several challenges, including dependency on specific models, difficulties in understanding and visualization, as well as issues related to efficiency. To address these limitations, we propose a novel framework called Med-MICN (Medical Multi-dimensional Interpretable Concept Network). Med-MICN provides interpretability alignment for various angles, including neural symbolic reasoning, concept semantics, and saliency maps, which are superior to current interpretable methods. Its advantages include high prediction accuracy, interpretability across multiple dimensions, and automation through an end-to-end concept labeling process that reduces the need for extensive human training effort when working with new datasets. To demonstrate the effectiveness and interpretability of Med-MICN, we apply it to four benchmark datasets and compare it with baselines. The results clearly demonstrate the superior performance and interpretability of our Med-MICN.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.21494
- https://arxiv.org/pdf/2410.21494
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404340918
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404340918Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.21494Digital Object Identifier
- Title
-
Towards Multi-dimensional Explanation Alignment for Medical ClassificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-28Full publication date if available
- Authors
-
Lijie Hu, Songning Lai, Wenshuo Chen, Hongru Xiao, Hongbin Lin, Lu Yu, Jingfeng Zhang, Di WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.21494Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.21494Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.21494Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Pattern recognition (psychology), Data miningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404340918 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.21494 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.21494 |
| ids.openalex | https://openalex.org/W4404340918 |
| fwci | |
| type | preprint |
| title | Towards Multi-dimensional Explanation Alignment for Medical Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9926999807357788 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T12026 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9765999913215637 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Explainable Artificial Intelligence (XAI) |
| topics[2].id | https://openalex.org/T12205 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9426000118255615 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Time Series Analysis and Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.48662814497947693 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.4466976523399353 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.40521886944770813 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.32010090351104736 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.48662814497947693 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.4466976523399353 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.40521886944770813 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.32010090351104736 |
| keywords[3].display_name | Data mining |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.21494 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.21494 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.21494 |
| locations[1].id | doi:10.48550/arxiv.2410.21494 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.21494 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100929414 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Lijie Hu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hu, Lijie |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5086484127 |
| authorships[1].author.orcid | https://orcid.org/0009-0007-3132-9414 |
| authorships[1].author.display_name | Songning Lai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lai, Songning |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5013569204 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Wenshuo Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Wenshuo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5053229311 |
| authorships[3].author.orcid | https://orcid.org/0009-0007-6715-357X |
| authorships[3].author.display_name | Hongru Xiao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiao, Hongru |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100630591 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5269-3393 |
| authorships[4].author.display_name | Hongbin Lin |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lin, Hongbin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5106403416 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0550-7754 |
| authorships[5].author.display_name | Lu Yu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yu, Lu |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5102724337 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8433-3704 |
| authorships[6].author.display_name | Jingfeng Zhang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zhang, Jingfeng |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100401433 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-5040-9408 |
| authorships[7].author.display_name | Di Wang |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Wang, Di |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.21494 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-11-14T00:00:00 |
| display_name | Towards Multi-dimensional Explanation Alignment for Medical Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9926999807357788 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.21494 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.21494 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.21494 |
| primary_location.id | pmh:oai:arXiv.org:2410.21494 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.21494 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.21494 |
| publication_date | 2024-10-28 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 49 |
| abstract_inverted_index.To | 43, 114 |
| abstract_inverted_index.an | 95 |
| abstract_inverted_index.as | 36, 38 |
| abstract_inverted_index.in | 4, 20, 32 |
| abstract_inverted_index.it | 124, 131 |
| abstract_inverted_index.of | 2, 7, 120, 143 |
| abstract_inverted_index.on | 28 |
| abstract_inverted_index.to | 41, 78, 125 |
| abstract_inverted_index.we | 47, 122 |
| abstract_inverted_index.Its | 82 |
| abstract_inverted_index.The | 0, 134 |
| abstract_inverted_index.and | 14, 34, 72, 92, 118, 129, 141 |
| abstract_inverted_index.are | 76 |
| abstract_inverted_index.for | 63, 104 |
| abstract_inverted_index.has | 11 |
| abstract_inverted_index.new | 112 |
| abstract_inverted_index.our | 144 |
| abstract_inverted_index.the | 5, 102, 116, 138 |
| abstract_inverted_index.four | 126 |
| abstract_inverted_index.high | 85 |
| abstract_inverted_index.lack | 1 |
| abstract_inverted_index.need | 103 |
| abstract_inverted_index.that | 100 |
| abstract_inverted_index.this | 21 |
| abstract_inverted_index.well | 37 |
| abstract_inverted_index.when | 109 |
| abstract_inverted_index.with | 111, 132 |
| abstract_inverted_index.apply | 123 |
| abstract_inverted_index.field | 6 |
| abstract_inverted_index.human | 106 |
| abstract_inverted_index.image | 9 |
| abstract_inverted_index.legal | 15 |
| abstract_inverted_index.maps, | 74 |
| abstract_inverted_index.novel | 50 |
| abstract_inverted_index.these | 45 |
| abstract_inverted_index.which | 75 |
| abstract_inverted_index.across | 89 |
| abstract_inverted_index.called | 52 |
| abstract_inverted_index.domain | 22 |
| abstract_inverted_index.effort | 108 |
| abstract_inverted_index.issues | 39 |
| abstract_inverted_index.neural | 67 |
| abstract_inverted_index.Concept | 57 |
| abstract_inverted_index.address | 44 |
| abstract_inverted_index.angles, | 65 |
| abstract_inverted_index.clearly | 136 |
| abstract_inverted_index.compare | 130 |
| abstract_inverted_index.concept | 70, 97 |
| abstract_inverted_index.current | 79 |
| abstract_inverted_index.ethical | 13 |
| abstract_inverted_index.include | 84 |
| abstract_inverted_index.medical | 8 |
| abstract_inverted_index.methods | 19 |
| abstract_inverted_index.models, | 30 |
| abstract_inverted_index.process | 99 |
| abstract_inverted_index.propose | 48 |
| abstract_inverted_index.reduces | 101 |
| abstract_inverted_index.related | 40 |
| abstract_inverted_index.results | 135 |
| abstract_inverted_index.several | 24 |
| abstract_inverted_index.through | 94 |
| abstract_inverted_index.various | 64 |
| abstract_inverted_index.working | 110 |
| abstract_inverted_index.(Medical | 54 |
| abstract_inverted_index.Existing | 17 |
| abstract_inverted_index.Med-MICN | 53, 59 |
| abstract_inverted_index.analysis | 10 |
| abstract_inverted_index.datasets | 128 |
| abstract_inverted_index.labeling | 98 |
| abstract_inverted_index.methods. | 81 |
| abstract_inverted_index.multiple | 90 |
| abstract_inverted_index.provides | 60 |
| abstract_inverted_index.saliency | 73 |
| abstract_inverted_index.specific | 29 |
| abstract_inverted_index.superior | 77, 139 |
| abstract_inverted_index.symbolic | 68 |
| abstract_inverted_index.training | 107 |
| abstract_inverted_index.Med-MICN, | 121 |
| abstract_inverted_index.Med-MICN. | 145 |
| abstract_inverted_index.Network). | 58 |
| abstract_inverted_index.accuracy, | 87 |
| abstract_inverted_index.alignment | 62 |
| abstract_inverted_index.benchmark | 127 |
| abstract_inverted_index.datasets. | 113 |
| abstract_inverted_index.encounter | 23 |
| abstract_inverted_index.extensive | 105 |
| abstract_inverted_index.framework | 51 |
| abstract_inverted_index.including | 26, 66 |
| abstract_inverted_index.advantages | 83 |
| abstract_inverted_index.automation | 93 |
| abstract_inverted_index.baselines. | 133 |
| abstract_inverted_index.dependency | 27 |
| abstract_inverted_index.end-to-end | 96 |
| abstract_inverted_index.prediction | 86 |
| abstract_inverted_index.reasoning, | 69 |
| abstract_inverted_index.semantics, | 71 |
| abstract_inverted_index.challenges, | 25 |
| abstract_inverted_index.demonstrate | 115, 137 |
| abstract_inverted_index.dimensions, | 91 |
| abstract_inverted_index.efficiency. | 42 |
| abstract_inverted_index.performance | 140 |
| abstract_inverted_index.significant | 12 |
| abstract_inverted_index.difficulties | 31 |
| abstract_inverted_index.limitations, | 46 |
| abstract_inverted_index.Interpretable | 56 |
| abstract_inverted_index.effectiveness | 117 |
| abstract_inverted_index.implications. | 16 |
| abstract_inverted_index.interpretable | 18, 80 |
| abstract_inverted_index.understanding | 33 |
| abstract_inverted_index.visualization, | 35 |
| abstract_inverted_index.interpretability | 3, 61, 88, 119, 142 |
| abstract_inverted_index.Multi-dimensional | 55 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |