Towards Quantifying Commonsense Reasoning with Mechanistic Insights Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2504.10077
Commonsense reasoning deals with the implicit knowledge that is well understood by humans and typically acquired via interactions with the world. In recent times, commonsense reasoning and understanding of various LLMs have been evaluated using text-based tasks. In this work, we argue that a proxy of this understanding can be maintained as a graphical structure that can further help to perform a rigorous evaluation of commonsense reasoning abilities about various real-world activities. We create an annotation scheme for capturing this implicit knowledge in the form of a graphical structure for 37 daily human activities. We find that the created resource can be used to frame an enormous number of commonsense queries (~ 10^{17}), facilitating rigorous evaluation of commonsense reasoning in LLMs. Moreover, recently, the remarkable performance of LLMs has raised questions about whether these models are truly capable of reasoning in the wild and, in general, how reasoning occurs inside these models. In this resource paper, we bridge this gap by proposing design mechanisms that facilitate research in a similar direction. Our findings suggest that the reasoning components are localized in LLMs that play a prominent role in decision-making when prompted with a commonsense query.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2504.10077
- https://arxiv.org/pdf/2504.10077
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415159509
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415159509Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2504.10077Digital Object Identifier
- Title
-
Towards Quantifying Commonsense Reasoning with Mechanistic InsightsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-14Full publication date if available
- Authors
-
Abhinav Joshi, Areeb Ahmad, D. K. Shukla, Ashutosh ModiList of authors in order
- Landing page
-
https://arxiv.org/abs/2504.10077Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2504.10077Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2504.10077Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415159509 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2504.10077 |
| ids.doi | https://doi.org/10.48550/arxiv.2504.10077 |
| ids.openalex | https://openalex.org/W4415159509 |
| fwci | |
| type | preprint |
| title | Towards Quantifying Commonsense Reasoning with Mechanistic Insights |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11010 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8651999831199646 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Logic, Reasoning, and Knowledge |
| topics[1].id | https://openalex.org/T10215 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.8639000058174133 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Semantic Web and Ontologies |
| topics[2].id | https://openalex.org/T11303 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.8144000172615051 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Bayesian Modeling and Causal Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2504.10077 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/2504.10077 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2504.10077 |
| locations[1].id | doi:10.48550/arxiv.2504.10077 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2504.10077 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103253154 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6756-1126 |
| authorships[0].author.display_name | Abhinav Joshi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Joshi, Abhinav |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102533871 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Areeb Ahmad |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ahmad, Areeb |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5031140914 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8835-9269 |
| authorships[2].author.display_name | D. K. Shukla |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shukla, Divyaksh |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5076043215 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0962-8350 |
| authorships[3].author.display_name | Ashutosh Modi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Modi, Ashutosh |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2504.10077 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-14T00:00:00 |
| display_name | Towards Quantifying Commonsense Reasoning with Mechanistic Insights |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11010 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8651999831199646 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Logic, Reasoning, and Knowledge |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2504.10077 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2504.10077 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2504.10077 |
| primary_location.id | pmh:oai:arXiv.org:2504.10077 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/2504.10077 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2504.10077 |
| publication_date | 2025-04-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 43, 52, 61, 86, 168, 184, 192 |
| abstract_inverted_index.(~ | 111 |
| abstract_inverted_index.37 | 90 |
| abstract_inverted_index.In | 21, 37, 152 |
| abstract_inverted_index.We | 72, 94 |
| abstract_inverted_index.an | 74, 105 |
| abstract_inverted_index.as | 51 |
| abstract_inverted_index.be | 49, 101 |
| abstract_inverted_index.by | 11, 160 |
| abstract_inverted_index.in | 82, 119, 140, 144, 167, 180, 187 |
| abstract_inverted_index.is | 8 |
| abstract_inverted_index.of | 28, 45, 64, 85, 108, 116, 126, 138 |
| abstract_inverted_index.to | 59, 103 |
| abstract_inverted_index.we | 40, 156 |
| abstract_inverted_index.Our | 171 |
| abstract_inverted_index.and | 13, 26 |
| abstract_inverted_index.are | 135, 178 |
| abstract_inverted_index.can | 48, 56, 100 |
| abstract_inverted_index.for | 77, 89 |
| abstract_inverted_index.gap | 159 |
| abstract_inverted_index.has | 128 |
| abstract_inverted_index.how | 146 |
| abstract_inverted_index.the | 4, 19, 83, 97, 123, 141, 175 |
| abstract_inverted_index.via | 16 |
| abstract_inverted_index.LLMs | 30, 127, 181 |
| abstract_inverted_index.and, | 143 |
| abstract_inverted_index.been | 32 |
| abstract_inverted_index.find | 95 |
| abstract_inverted_index.form | 84 |
| abstract_inverted_index.have | 31 |
| abstract_inverted_index.help | 58 |
| abstract_inverted_index.play | 183 |
| abstract_inverted_index.role | 186 |
| abstract_inverted_index.that | 7, 42, 55, 96, 164, 174, 182 |
| abstract_inverted_index.this | 38, 46, 79, 153, 158 |
| abstract_inverted_index.used | 102 |
| abstract_inverted_index.well | 9 |
| abstract_inverted_index.when | 189 |
| abstract_inverted_index.wild | 142 |
| abstract_inverted_index.with | 3, 18, 191 |
| abstract_inverted_index.LLMs. | 120 |
| abstract_inverted_index.about | 68, 131 |
| abstract_inverted_index.argue | 41 |
| abstract_inverted_index.daily | 91 |
| abstract_inverted_index.deals | 2 |
| abstract_inverted_index.frame | 104 |
| abstract_inverted_index.human | 92 |
| abstract_inverted_index.proxy | 44 |
| abstract_inverted_index.these | 133, 150 |
| abstract_inverted_index.truly | 136 |
| abstract_inverted_index.using | 34 |
| abstract_inverted_index.work, | 39 |
| abstract_inverted_index.bridge | 157 |
| abstract_inverted_index.create | 73 |
| abstract_inverted_index.design | 162 |
| abstract_inverted_index.humans | 12 |
| abstract_inverted_index.inside | 149 |
| abstract_inverted_index.models | 134 |
| abstract_inverted_index.number | 107 |
| abstract_inverted_index.occurs | 148 |
| abstract_inverted_index.paper, | 155 |
| abstract_inverted_index.query. | 194 |
| abstract_inverted_index.raised | 129 |
| abstract_inverted_index.recent | 22 |
| abstract_inverted_index.scheme | 76 |
| abstract_inverted_index.tasks. | 36 |
| abstract_inverted_index.times, | 23 |
| abstract_inverted_index.world. | 20 |
| abstract_inverted_index.capable | 137 |
| abstract_inverted_index.created | 98 |
| abstract_inverted_index.further | 57 |
| abstract_inverted_index.models. | 151 |
| abstract_inverted_index.perform | 60 |
| abstract_inverted_index.queries | 110 |
| abstract_inverted_index.similar | 169 |
| abstract_inverted_index.suggest | 173 |
| abstract_inverted_index.various | 29, 69 |
| abstract_inverted_index.whether | 132 |
| abstract_inverted_index.acquired | 15 |
| abstract_inverted_index.enormous | 106 |
| abstract_inverted_index.findings | 172 |
| abstract_inverted_index.general, | 145 |
| abstract_inverted_index.implicit | 5, 80 |
| abstract_inverted_index.prompted | 190 |
| abstract_inverted_index.research | 166 |
| abstract_inverted_index.resource | 99, 154 |
| abstract_inverted_index.rigorous | 62, 114 |
| abstract_inverted_index.10^{17}), | 112 |
| abstract_inverted_index.Moreover, | 121 |
| abstract_inverted_index.abilities | 67 |
| abstract_inverted_index.capturing | 78 |
| abstract_inverted_index.evaluated | 33 |
| abstract_inverted_index.graphical | 53, 87 |
| abstract_inverted_index.knowledge | 6, 81 |
| abstract_inverted_index.localized | 179 |
| abstract_inverted_index.prominent | 185 |
| abstract_inverted_index.proposing | 161 |
| abstract_inverted_index.questions | 130 |
| abstract_inverted_index.reasoning | 1, 25, 66, 118, 139, 147, 176 |
| abstract_inverted_index.recently, | 122 |
| abstract_inverted_index.structure | 54, 88 |
| abstract_inverted_index.typically | 14 |
| abstract_inverted_index.annotation | 75 |
| abstract_inverted_index.components | 177 |
| abstract_inverted_index.direction. | 170 |
| abstract_inverted_index.evaluation | 63, 115 |
| abstract_inverted_index.facilitate | 165 |
| abstract_inverted_index.maintained | 50 |
| abstract_inverted_index.mechanisms | 163 |
| abstract_inverted_index.real-world | 70 |
| abstract_inverted_index.remarkable | 124 |
| abstract_inverted_index.text-based | 35 |
| abstract_inverted_index.understood | 10 |
| abstract_inverted_index.Commonsense | 0 |
| abstract_inverted_index.activities. | 71, 93 |
| abstract_inverted_index.commonsense | 24, 65, 109, 117, 193 |
| abstract_inverted_index.performance | 125 |
| abstract_inverted_index.facilitating | 113 |
| abstract_inverted_index.interactions | 17 |
| abstract_inverted_index.understanding | 27, 47 |
| abstract_inverted_index.decision-making | 188 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |