Towards Robust Evaluation of Unlearning in LLMs via Data Transformations Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.15477
Large Language Models (LLMs) have shown to be a great success in a wide range of applications ranging from regular NLP-based use cases to AI agents. LLMs have been trained on a vast corpus of texts from various sources; despite the best efforts during the data pre-processing stage while training the LLMs, they may pick some undesirable information such as personally identifiable information (PII). Consequently, in recent times research in the area of Machine Unlearning (MUL) has become active, the main idea is to force LLMs to forget (unlearn) certain information (e.g., PII) without suffering from performance loss on regular tasks. In this work, we examine the robustness of the existing MUL techniques for their ability to enable leakage-proof forgetting in LLMs. In particular, we examine the effect of data transformation on forgetting, i.e., is an unlearned LLM able to recall forgotten information if there is a change in the format of the input? Our findings on the TOFU dataset highlight the necessity of using diverse data formats to quantify unlearning in LLMs more reliably.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.15477
- https://arxiv.org/pdf/2411.15477
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404986573
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404986573Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.15477Digital Object Identifier
- Title
-
Towards Robust Evaluation of Unlearning in LLMs via Data TransformationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-23Full publication date if available
- Authors
-
Abhinav Joshi, Sujit Saha, D. K. Shukla, Sriram Vema, Harsh Jhamtani, Manas Gaur, Ashutosh ModiList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.15477Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.15477Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.15477Direct OA link when available
- Concepts
-
Political science, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404986573 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.15477 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.15477 |
| ids.openalex | https://openalex.org/W4404986573 |
| fwci | |
| type | preprint |
| title | Towards Robust Evaluation of Unlearning in LLMs via Data Transformations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10876 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.7224000096321106 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Fault Detection and Control Systems |
| topics[1].id | https://openalex.org/T11801 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.6578999757766724 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Reservoir Engineering and Simulation Methods |
| topics[2].id | https://openalex.org/T14470 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.6001999974250793 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Advanced Data Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C17744445 |
| concepts[0].level | 0 |
| concepts[0].score | 0.33818620443344116 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[0].display_name | Political science |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.328423410654068 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/political-science |
| keywords[0].score | 0.33818620443344116 |
| keywords[0].display_name | Political science |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.328423410654068 |
| keywords[1].display_name | Computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.15477 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.15477 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.15477 |
| locations[1].id | doi:10.48550/arxiv.2411.15477 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.15477 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5114847525 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Abhinav Joshi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Joshi, Abhinav |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5008388681 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9705-5045 |
| authorships[1].author.display_name | Sujit Saha |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Saha, Shaswati |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5031140914 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8835-9269 |
| authorships[2].author.display_name | D. K. Shukla |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shukla, Divyaksh |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5114847526 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Sriram Vema |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Vema, Sriram |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5114847527 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Harsh Jhamtani |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jhamtani, Harsh |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5023667301 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5411-2230 |
| authorships[5].author.display_name | Manas Gaur |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Gaur, Manas |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5076043215 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0962-8350 |
| authorships[6].author.display_name | Ashutosh Modi |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Modi, Ashutosh |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.15477 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards Robust Evaluation of Unlearning in LLMs via Data Transformations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10876 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.7224000096321106 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Fault Detection and Control Systems |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.15477 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.15477 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.15477 |
| primary_location.id | pmh:oai:arXiv.org:2411.15477 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.15477 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.15477 |
| publication_date | 2024-11-23 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 8, 12, 31, 146 |
| abstract_inverted_index.AI | 24 |
| abstract_inverted_index.In | 101, 122 |
| abstract_inverted_index.an | 135 |
| abstract_inverted_index.as | 59 |
| abstract_inverted_index.be | 7 |
| abstract_inverted_index.if | 143 |
| abstract_inverted_index.in | 11, 65, 69, 120, 148, 171 |
| abstract_inverted_index.is | 82, 134, 145 |
| abstract_inverted_index.of | 15, 34, 72, 108, 128, 151, 163 |
| abstract_inverted_index.on | 30, 98, 131, 156 |
| abstract_inverted_index.to | 6, 23, 83, 86, 116, 139, 168 |
| abstract_inverted_index.we | 104, 124 |
| abstract_inverted_index.LLM | 137 |
| abstract_inverted_index.MUL | 111 |
| abstract_inverted_index.Our | 154 |
| abstract_inverted_index.for | 113 |
| abstract_inverted_index.has | 76 |
| abstract_inverted_index.may | 53 |
| abstract_inverted_index.the | 40, 44, 50, 70, 79, 106, 109, 126, 149, 152, 157, 161 |
| abstract_inverted_index.use | 21 |
| abstract_inverted_index.LLMs | 26, 85, 172 |
| abstract_inverted_index.PII) | 92 |
| abstract_inverted_index.TOFU | 158 |
| abstract_inverted_index.able | 138 |
| abstract_inverted_index.area | 71 |
| abstract_inverted_index.been | 28 |
| abstract_inverted_index.best | 41 |
| abstract_inverted_index.data | 45, 129, 166 |
| abstract_inverted_index.from | 18, 36, 95 |
| abstract_inverted_index.have | 4, 27 |
| abstract_inverted_index.idea | 81 |
| abstract_inverted_index.loss | 97 |
| abstract_inverted_index.main | 80 |
| abstract_inverted_index.more | 173 |
| abstract_inverted_index.pick | 54 |
| abstract_inverted_index.some | 55 |
| abstract_inverted_index.such | 58 |
| abstract_inverted_index.they | 52 |
| abstract_inverted_index.this | 102 |
| abstract_inverted_index.vast | 32 |
| abstract_inverted_index.wide | 13 |
| abstract_inverted_index.(MUL) | 75 |
| abstract_inverted_index.LLMs, | 51 |
| abstract_inverted_index.LLMs. | 121 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.cases | 22 |
| abstract_inverted_index.force | 84 |
| abstract_inverted_index.great | 9 |
| abstract_inverted_index.i.e., | 133 |
| abstract_inverted_index.range | 14 |
| abstract_inverted_index.shown | 5 |
| abstract_inverted_index.stage | 47 |
| abstract_inverted_index.texts | 35 |
| abstract_inverted_index.their | 114 |
| abstract_inverted_index.there | 144 |
| abstract_inverted_index.times | 67 |
| abstract_inverted_index.using | 164 |
| abstract_inverted_index.while | 48 |
| abstract_inverted_index.work, | 103 |
| abstract_inverted_index.(LLMs) | 3 |
| abstract_inverted_index.(PII). | 63 |
| abstract_inverted_index.(e.g., | 91 |
| abstract_inverted_index.Models | 2 |
| abstract_inverted_index.become | 77 |
| abstract_inverted_index.change | 147 |
| abstract_inverted_index.corpus | 33 |
| abstract_inverted_index.during | 43 |
| abstract_inverted_index.effect | 127 |
| abstract_inverted_index.enable | 117 |
| abstract_inverted_index.forget | 87 |
| abstract_inverted_index.format | 150 |
| abstract_inverted_index.input? | 153 |
| abstract_inverted_index.recall | 140 |
| abstract_inverted_index.recent | 66 |
| abstract_inverted_index.tasks. | 100 |
| abstract_inverted_index.Machine | 73 |
| abstract_inverted_index.ability | 115 |
| abstract_inverted_index.active, | 78 |
| abstract_inverted_index.agents. | 25 |
| abstract_inverted_index.certain | 89 |
| abstract_inverted_index.dataset | 159 |
| abstract_inverted_index.despite | 39 |
| abstract_inverted_index.diverse | 165 |
| abstract_inverted_index.efforts | 42 |
| abstract_inverted_index.examine | 105, 125 |
| abstract_inverted_index.formats | 167 |
| abstract_inverted_index.ranging | 17 |
| abstract_inverted_index.regular | 19, 99 |
| abstract_inverted_index.success | 10 |
| abstract_inverted_index.trained | 29 |
| abstract_inverted_index.various | 37 |
| abstract_inverted_index.without | 93 |
| abstract_inverted_index.Language | 1 |
| abstract_inverted_index.existing | 110 |
| abstract_inverted_index.findings | 155 |
| abstract_inverted_index.quantify | 169 |
| abstract_inverted_index.research | 68 |
| abstract_inverted_index.sources; | 38 |
| abstract_inverted_index.training | 49 |
| abstract_inverted_index.(unlearn) | 88 |
| abstract_inverted_index.NLP-based | 20 |
| abstract_inverted_index.forgotten | 141 |
| abstract_inverted_index.highlight | 160 |
| abstract_inverted_index.necessity | 162 |
| abstract_inverted_index.reliably. | 174 |
| abstract_inverted_index.suffering | 94 |
| abstract_inverted_index.unlearned | 136 |
| abstract_inverted_index.Unlearning | 74 |
| abstract_inverted_index.forgetting | 119 |
| abstract_inverted_index.personally | 60 |
| abstract_inverted_index.robustness | 107 |
| abstract_inverted_index.techniques | 112 |
| abstract_inverted_index.unlearning | 170 |
| abstract_inverted_index.forgetting, | 132 |
| abstract_inverted_index.information | 57, 62, 90, 142 |
| abstract_inverted_index.particular, | 123 |
| abstract_inverted_index.performance | 96 |
| abstract_inverted_index.undesirable | 56 |
| abstract_inverted_index.applications | 16 |
| abstract_inverted_index.identifiable | 61 |
| abstract_inverted_index.Consequently, | 64 |
| abstract_inverted_index.leakage-proof | 118 |
| abstract_inverted_index.pre-processing | 46 |
| abstract_inverted_index.transformation | 130 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |