Towards Safe and Efficient Through-the-Canopy Autonomous Fruit Counting with UAVs Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.18293
We present an autonomous aerial system for safe and efficient through-the-canopy fruit counting. Aerial robot applications in large-scale orchards face significant challenges due to the complexity of fine-tuning flight paths based on orchard layouts, canopy density, and plant variability. Through-the-canopy navigation is crucial for minimizing occlusion by leaves and branches but is more challenging due to the complex and dense environment compared to traditional over-the-canopy flights. Our system addresses these challenges by integrating: i) a high-fidelity simulation framework for optimizing flight trajectories, ii) a low-cost autonomy stack for canopy-level navigation and data collection, and iii) a robust workflow for fruit detection and counting using RGB images. We validate our approach through fruit counting with canopy-level aerial images and by demonstrating the autonomous navigation capabilities of our experimental vehicle.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.18293
- https://arxiv.org/pdf/2409.18293
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403809172
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403809172Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.18293Digital Object Identifier
- Title
-
Towards Safe and Efficient Through-the-Canopy Autonomous Fruit Counting with UAVsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-26Full publication date if available
- Authors
-
Teaya Yang, Roman Ibrahimov, Mark W. MuellerList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.18293Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.18293Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.18293Direct OA link when available
- Concepts
-
Canopy, Environmental science, Computer science, Remote sensing, Geography, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403809172 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.18293 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.18293 |
| ids.openalex | https://openalex.org/W4403809172 |
| fwci | |
| type | preprint |
| title | Towards Safe and Efficient Through-the-Canopy Autonomous Fruit Counting with UAVs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9492999911308289 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C101000010 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7953721880912781 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5033434 |
| concepts[0].display_name | Canopy |
| concepts[1].id | https://openalex.org/C39432304 |
| concepts[1].level | 0 |
| concepts[1].score | 0.44962507486343384 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[1].display_name | Environmental science |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.43479663133621216 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C62649853 |
| concepts[3].level | 1 |
| concepts[3].score | 0.371646523475647 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[3].display_name | Remote sensing |
| concepts[4].id | https://openalex.org/C205649164 |
| concepts[4].level | 0 |
| concepts[4].score | 0.21841886639595032 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[4].display_name | Geography |
| concepts[5].id | https://openalex.org/C166957645 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0913967490196228 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[5].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/canopy |
| keywords[0].score | 0.7953721880912781 |
| keywords[0].display_name | Canopy |
| keywords[1].id | https://openalex.org/keywords/environmental-science |
| keywords[1].score | 0.44962507486343384 |
| keywords[1].display_name | Environmental science |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.43479663133621216 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/remote-sensing |
| keywords[3].score | 0.371646523475647 |
| keywords[3].display_name | Remote sensing |
| keywords[4].id | https://openalex.org/keywords/geography |
| keywords[4].score | 0.21841886639595032 |
| keywords[4].display_name | Geography |
| keywords[5].id | https://openalex.org/keywords/archaeology |
| keywords[5].score | 0.0913967490196228 |
| keywords[5].display_name | Archaeology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.18293 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.18293 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.18293 |
| locations[1].id | doi:10.48550/arxiv.2409.18293 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.18293 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102260544 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-0836-0662 |
| authorships[0].author.display_name | Teaya Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Teaya |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5114424059 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Roman Ibrahimov |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ibrahimov, Roman |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5009591368 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0557-5677 |
| authorships[2].author.display_name | Mark W. Mueller |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Mueller, Mark W. |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.18293 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards Safe and Efficient Through-the-Canopy Autonomous Fruit Counting with UAVs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9492999911308289 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2347729776, https://openalex.org/W2081457971, https://openalex.org/W2028659695, https://openalex.org/W2072749356, https://openalex.org/W2587804871, https://openalex.org/W2014400117, https://openalex.org/W4389236673 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.18293 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.18293 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.18293 |
| primary_location.id | pmh:oai:arXiv.org:2409.18293 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.18293 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.18293 |
| publication_date | 2024-09-26 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 74, 83, 95 |
| abstract_inverted_index.We | 0, 106 |
| abstract_inverted_index.an | 2 |
| abstract_inverted_index.by | 46, 71, 118 |
| abstract_inverted_index.i) | 73 |
| abstract_inverted_index.in | 16 |
| abstract_inverted_index.is | 41, 51 |
| abstract_inverted_index.of | 26, 124 |
| abstract_inverted_index.on | 31 |
| abstract_inverted_index.to | 23, 55, 62 |
| abstract_inverted_index.Our | 66 |
| abstract_inverted_index.RGB | 104 |
| abstract_inverted_index.and | 8, 36, 48, 58, 90, 93, 101, 117 |
| abstract_inverted_index.but | 50 |
| abstract_inverted_index.due | 22, 54 |
| abstract_inverted_index.for | 6, 43, 78, 87, 98 |
| abstract_inverted_index.ii) | 82 |
| abstract_inverted_index.our | 108, 125 |
| abstract_inverted_index.the | 24, 56, 120 |
| abstract_inverted_index.data | 91 |
| abstract_inverted_index.face | 19 |
| abstract_inverted_index.iii) | 94 |
| abstract_inverted_index.more | 52 |
| abstract_inverted_index.safe | 7 |
| abstract_inverted_index.with | 113 |
| abstract_inverted_index.based | 30 |
| abstract_inverted_index.dense | 59 |
| abstract_inverted_index.fruit | 11, 99, 111 |
| abstract_inverted_index.paths | 29 |
| abstract_inverted_index.plant | 37 |
| abstract_inverted_index.robot | 14 |
| abstract_inverted_index.stack | 86 |
| abstract_inverted_index.these | 69 |
| abstract_inverted_index.using | 103 |
| abstract_inverted_index.Aerial | 13 |
| abstract_inverted_index.aerial | 4, 115 |
| abstract_inverted_index.canopy | 34 |
| abstract_inverted_index.flight | 28, 80 |
| abstract_inverted_index.images | 116 |
| abstract_inverted_index.leaves | 47 |
| abstract_inverted_index.robust | 96 |
| abstract_inverted_index.system | 5, 67 |
| abstract_inverted_index.complex | 57 |
| abstract_inverted_index.crucial | 42 |
| abstract_inverted_index.images. | 105 |
| abstract_inverted_index.orchard | 32 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.through | 110 |
| abstract_inverted_index.approach | 109 |
| abstract_inverted_index.autonomy | 85 |
| abstract_inverted_index.branches | 49 |
| abstract_inverted_index.compared | 61 |
| abstract_inverted_index.counting | 102, 112 |
| abstract_inverted_index.density, | 35 |
| abstract_inverted_index.flights. | 65 |
| abstract_inverted_index.layouts, | 33 |
| abstract_inverted_index.low-cost | 84 |
| abstract_inverted_index.orchards | 18 |
| abstract_inverted_index.validate | 107 |
| abstract_inverted_index.vehicle. | 127 |
| abstract_inverted_index.workflow | 97 |
| abstract_inverted_index.addresses | 68 |
| abstract_inverted_index.counting. | 12 |
| abstract_inverted_index.detection | 100 |
| abstract_inverted_index.efficient | 9 |
| abstract_inverted_index.framework | 77 |
| abstract_inverted_index.occlusion | 45 |
| abstract_inverted_index.autonomous | 3, 121 |
| abstract_inverted_index.challenges | 21, 70 |
| abstract_inverted_index.complexity | 25 |
| abstract_inverted_index.minimizing | 44 |
| abstract_inverted_index.navigation | 40, 89, 122 |
| abstract_inverted_index.optimizing | 79 |
| abstract_inverted_index.simulation | 76 |
| abstract_inverted_index.challenging | 53 |
| abstract_inverted_index.collection, | 92 |
| abstract_inverted_index.environment | 60 |
| abstract_inverted_index.fine-tuning | 27 |
| abstract_inverted_index.large-scale | 17 |
| abstract_inverted_index.significant | 20 |
| abstract_inverted_index.traditional | 63 |
| abstract_inverted_index.applications | 15 |
| abstract_inverted_index.canopy-level | 88, 114 |
| abstract_inverted_index.capabilities | 123 |
| abstract_inverted_index.experimental | 126 |
| abstract_inverted_index.integrating: | 72 |
| abstract_inverted_index.variability. | 38 |
| abstract_inverted_index.demonstrating | 119 |
| abstract_inverted_index.high-fidelity | 75 |
| abstract_inverted_index.trajectories, | 81 |
| abstract_inverted_index.over-the-canopy | 64 |
| abstract_inverted_index.Through-the-canopy | 39 |
| abstract_inverted_index.through-the-canopy | 10 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |