Towards Scalable Neural Representation for Diverse Videos Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2303.14124
Implicit neural representations (INR) have gained increasing attention in representing 3D scenes and images, and have been recently applied to encode videos (e.g., NeRV, E-NeRV). While achieving promising results, existing INR-based methods are limited to encoding a handful of short videos (e.g., seven 5-second videos in the UVG dataset) with redundant visual content, leading to a model design that fits individual video frames independently and is not efficiently scalable to a large number of diverse videos. This paper focuses on developing neural representations for a more practical setup -- encoding long and/or a large number of videos with diverse visual content. We first show that instead of dividing videos into small subsets and encoding them with separate models, encoding long and diverse videos jointly with a unified model achieves better compression results. Based on this observation, we propose D-NeRV, a novel neural representation framework designed to encode diverse videos by (i) decoupling clip-specific visual content from motion information, (ii) introducing temporal reasoning into the implicit neural network, and (iii) employing the task-oriented flow as intermediate output to reduce spatial redundancies. Our new model largely surpasses NeRV and traditional video compression techniques on UCF101 and UVG datasets on the video compression task. Moreover, when used as an efficient data-loader, D-NeRV achieves 3%-10% higher accuracy than NeRV on action recognition tasks on the UCF101 dataset under the same compression ratios.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2303.14124
- https://arxiv.org/pdf/2303.14124
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4361021222
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4361021222Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2303.14124Digital Object Identifier
- Title
-
Towards Scalable Neural Representation for Diverse VideosWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-24Full publication date if available
- Authors
-
Bo He, Xitong Yang, Hanyu Wang, Zuxuan Wu, Hao Chen, Shuaiyi Huang, Yixuan Ren, Ser-Nam Lim, Abhinav ShrivastavaList of authors in order
- Landing page
-
https://arxiv.org/abs/2303.14124Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2303.14124Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2303.14124Direct OA link when available
- Concepts
-
Computer science, ENCODE, Encoding (memory), Artificial intelligence, Task (project management), Scalability, Representation (politics), Data compression, Pattern recognition (psychology), Computer vision, Gene, Economics, Biochemistry, Law, Database, Politics, Management, Political science, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4361021222 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2303.14124 |
| ids.doi | https://doi.org/10.48550/arxiv.2303.14124 |
| ids.openalex | https://openalex.org/W4361021222 |
| fwci | |
| type | preprint |
| title | Towards Scalable Neural Representation for Diverse Videos |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10812 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Human Pose and Action Recognition |
| topics[1].id | https://openalex.org/T10531 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Vision and Imaging |
| topics[2].id | https://openalex.org/T10775 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9944000244140625 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8162032961845398 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C66746571 |
| concepts[1].level | 3 |
| concepts[1].score | 0.729991614818573 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1134833 |
| concepts[1].display_name | ENCODE |
| concepts[2].id | https://openalex.org/C125411270 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6554954051971436 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q18653 |
| concepts[2].display_name | Encoding (memory) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5511299967765808 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2780451532 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5453602075576782 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[4].display_name | Task (project management) |
| concepts[5].id | https://openalex.org/C48044578 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5246912837028503 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[5].display_name | Scalability |
| concepts[6].id | https://openalex.org/C2776359362 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5125513076782227 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[6].display_name | Representation (politics) |
| concepts[7].id | https://openalex.org/C78548338 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4556146562099457 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2493 |
| concepts[7].display_name | Data compression |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.33416682481765747 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3222845196723938 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C104317684 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[10].display_name | Gene |
| concepts[11].id | https://openalex.org/C162324750 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[11].display_name | Economics |
| concepts[12].id | https://openalex.org/C55493867 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[12].display_name | Biochemistry |
| concepts[13].id | https://openalex.org/C199539241 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[13].display_name | Law |
| concepts[14].id | https://openalex.org/C77088390 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[14].display_name | Database |
| concepts[15].id | https://openalex.org/C94625758 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[15].display_name | Politics |
| concepts[16].id | https://openalex.org/C187736073 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[16].display_name | Management |
| concepts[17].id | https://openalex.org/C17744445 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[17].display_name | Political science |
| concepts[18].id | https://openalex.org/C185592680 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[18].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8162032961845398 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/encode |
| keywords[1].score | 0.729991614818573 |
| keywords[1].display_name | ENCODE |
| keywords[2].id | https://openalex.org/keywords/encoding |
| keywords[2].score | 0.6554954051971436 |
| keywords[2].display_name | Encoding (memory) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5511299967765808 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/task |
| keywords[4].score | 0.5453602075576782 |
| keywords[4].display_name | Task (project management) |
| keywords[5].id | https://openalex.org/keywords/scalability |
| keywords[5].score | 0.5246912837028503 |
| keywords[5].display_name | Scalability |
| keywords[6].id | https://openalex.org/keywords/representation |
| keywords[6].score | 0.5125513076782227 |
| keywords[6].display_name | Representation (politics) |
| keywords[7].id | https://openalex.org/keywords/data-compression |
| keywords[7].score | 0.4556146562099457 |
| keywords[7].display_name | Data compression |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.33416682481765747 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.3222845196723938 |
| keywords[9].display_name | Computer vision |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2303.14124 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2303.14124 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2303.14124 |
| locations[1].id | doi:10.48550/arxiv.2303.14124 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2303.14124 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100760748 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6826-4721 |
| authorships[0].author.display_name | Bo He |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | He, Bo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5091064356 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4372-241X |
| authorships[1].author.display_name | Xitong Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yang, Xitong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100713368 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9162-9730 |
| authorships[2].author.display_name | Hanyu Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Hanyu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5026167547 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8689-5807 |
| authorships[3].author.display_name | Zuxuan Wu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wu, Zuxuan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100353664 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4417-614X |
| authorships[4].author.display_name | Hao Chen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chen, Hao |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5064995424 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0555-2077 |
| authorships[5].author.display_name | Shuaiyi Huang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Huang, Shuaiyi |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5027838882 |
| authorships[6].author.orcid | https://orcid.org/0009-0006-1584-6457 |
| authorships[6].author.display_name | Yixuan Ren |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Ren, Yixuan |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5113969216 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-9525-0288 |
| authorships[7].author.display_name | Ser-Nam Lim |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Lim, Ser-Nam |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5101614443 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-8928-8554 |
| authorships[8].author.display_name | Abhinav Shrivastava |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Shrivastava, Abhinav |
| authorships[8].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2303.14124 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards Scalable Neural Representation for Diverse Videos |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10812 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Human Pose and Action Recognition |
| related_works | https://openalex.org/W2372020181, https://openalex.org/W2156531654, https://openalex.org/W1581723585, https://openalex.org/W4378714697, https://openalex.org/W2294330161, https://openalex.org/W2253069048, https://openalex.org/W2804553224, https://openalex.org/W140709781, https://openalex.org/W3214340375, https://openalex.org/W1510159504 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2303.14124 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2303.14124 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2303.14124 |
| primary_location.id | pmh:oai:arXiv.org:2303.14124 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2303.14124 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2303.14124 |
| publication_date | 2023-03-24 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 36, 55, 70, 84, 92, 125, 139 |
| abstract_inverted_index.-- | 88 |
| abstract_inverted_index.3D | 10 |
| abstract_inverted_index.We | 101 |
| abstract_inverted_index.an | 205 |
| abstract_inverted_index.as | 173, 204 |
| abstract_inverted_index.by | 149 |
| abstract_inverted_index.in | 8, 45 |
| abstract_inverted_index.is | 65 |
| abstract_inverted_index.of | 38, 73, 95, 106 |
| abstract_inverted_index.on | 79, 133, 191, 196, 215, 219 |
| abstract_inverted_index.to | 19, 34, 54, 69, 145, 176 |
| abstract_inverted_index.we | 136 |
| abstract_inverted_index.(i) | 150 |
| abstract_inverted_index.Our | 180 |
| abstract_inverted_index.UVG | 47, 194 |
| abstract_inverted_index.and | 12, 14, 64, 112, 120, 167, 186, 193 |
| abstract_inverted_index.are | 32 |
| abstract_inverted_index.for | 83 |
| abstract_inverted_index.new | 181 |
| abstract_inverted_index.not | 66 |
| abstract_inverted_index.the | 46, 163, 170, 197, 220, 224 |
| abstract_inverted_index.(ii) | 158 |
| abstract_inverted_index.NeRV | 185, 214 |
| abstract_inverted_index.This | 76 |
| abstract_inverted_index.been | 16 |
| abstract_inverted_index.fits | 59 |
| abstract_inverted_index.flow | 172 |
| abstract_inverted_index.from | 155 |
| abstract_inverted_index.have | 4, 15 |
| abstract_inverted_index.into | 109, 162 |
| abstract_inverted_index.long | 90, 119 |
| abstract_inverted_index.more | 85 |
| abstract_inverted_index.same | 225 |
| abstract_inverted_index.show | 103 |
| abstract_inverted_index.than | 213 |
| abstract_inverted_index.that | 58, 104 |
| abstract_inverted_index.them | 114 |
| abstract_inverted_index.this | 134 |
| abstract_inverted_index.used | 203 |
| abstract_inverted_index.when | 202 |
| abstract_inverted_index.with | 49, 97, 115, 124 |
| abstract_inverted_index.(INR) | 3 |
| abstract_inverted_index.(iii) | 168 |
| abstract_inverted_index.Based | 132 |
| abstract_inverted_index.NeRV, | 23 |
| abstract_inverted_index.While | 25 |
| abstract_inverted_index.first | 102 |
| abstract_inverted_index.large | 71, 93 |
| abstract_inverted_index.model | 56, 127, 182 |
| abstract_inverted_index.novel | 140 |
| abstract_inverted_index.paper | 77 |
| abstract_inverted_index.setup | 87 |
| abstract_inverted_index.seven | 42 |
| abstract_inverted_index.short | 39 |
| abstract_inverted_index.small | 110 |
| abstract_inverted_index.task. | 200 |
| abstract_inverted_index.tasks | 218 |
| abstract_inverted_index.under | 223 |
| abstract_inverted_index.video | 61, 188, 198 |
| abstract_inverted_index.(e.g., | 22, 41 |
| abstract_inverted_index.3%-10% | 210 |
| abstract_inverted_index.D-NeRV | 208 |
| abstract_inverted_index.UCF101 | 192, 221 |
| abstract_inverted_index.action | 216 |
| abstract_inverted_index.and/or | 91 |
| abstract_inverted_index.better | 129 |
| abstract_inverted_index.design | 57 |
| abstract_inverted_index.encode | 20, 146 |
| abstract_inverted_index.frames | 62 |
| abstract_inverted_index.gained | 5 |
| abstract_inverted_index.higher | 211 |
| abstract_inverted_index.motion | 156 |
| abstract_inverted_index.neural | 1, 81, 141, 165 |
| abstract_inverted_index.number | 72, 94 |
| abstract_inverted_index.output | 175 |
| abstract_inverted_index.reduce | 177 |
| abstract_inverted_index.scenes | 11 |
| abstract_inverted_index.videos | 21, 40, 44, 96, 108, 122, 148 |
| abstract_inverted_index.visual | 51, 99, 153 |
| abstract_inverted_index.D-NeRV, | 138 |
| abstract_inverted_index.applied | 18 |
| abstract_inverted_index.content | 154 |
| abstract_inverted_index.dataset | 222 |
| abstract_inverted_index.diverse | 74, 98, 121, 147 |
| abstract_inverted_index.focuses | 78 |
| abstract_inverted_index.handful | 37 |
| abstract_inverted_index.images, | 13 |
| abstract_inverted_index.instead | 105 |
| abstract_inverted_index.jointly | 123 |
| abstract_inverted_index.largely | 183 |
| abstract_inverted_index.leading | 53 |
| abstract_inverted_index.limited | 33 |
| abstract_inverted_index.methods | 31 |
| abstract_inverted_index.models, | 117 |
| abstract_inverted_index.propose | 137 |
| abstract_inverted_index.ratios. | 227 |
| abstract_inverted_index.spatial | 178 |
| abstract_inverted_index.subsets | 111 |
| abstract_inverted_index.unified | 126 |
| abstract_inverted_index.videos. | 75 |
| abstract_inverted_index.5-second | 43 |
| abstract_inverted_index.E-NeRV). | 24 |
| abstract_inverted_index.Implicit | 0 |
| abstract_inverted_index.accuracy | 212 |
| abstract_inverted_index.achieves | 128, 209 |
| abstract_inverted_index.content, | 52 |
| abstract_inverted_index.content. | 100 |
| abstract_inverted_index.dataset) | 48 |
| abstract_inverted_index.datasets | 195 |
| abstract_inverted_index.designed | 144 |
| abstract_inverted_index.dividing | 107 |
| abstract_inverted_index.encoding | 35, 89, 113, 118 |
| abstract_inverted_index.existing | 29 |
| abstract_inverted_index.implicit | 164 |
| abstract_inverted_index.network, | 166 |
| abstract_inverted_index.recently | 17 |
| abstract_inverted_index.results, | 28 |
| abstract_inverted_index.results. | 131 |
| abstract_inverted_index.scalable | 68 |
| abstract_inverted_index.separate | 116 |
| abstract_inverted_index.temporal | 160 |
| abstract_inverted_index.INR-based | 30 |
| abstract_inverted_index.Moreover, | 201 |
| abstract_inverted_index.achieving | 26 |
| abstract_inverted_index.attention | 7 |
| abstract_inverted_index.efficient | 206 |
| abstract_inverted_index.employing | 169 |
| abstract_inverted_index.framework | 143 |
| abstract_inverted_index.practical | 86 |
| abstract_inverted_index.promising | 27 |
| abstract_inverted_index.reasoning | 161 |
| abstract_inverted_index.redundant | 50 |
| abstract_inverted_index.surpasses | 184 |
| abstract_inverted_index.decoupling | 151 |
| abstract_inverted_index.developing | 80 |
| abstract_inverted_index.increasing | 6 |
| abstract_inverted_index.individual | 60 |
| abstract_inverted_index.techniques | 190 |
| abstract_inverted_index.compression | 130, 189, 199, 226 |
| abstract_inverted_index.efficiently | 67 |
| abstract_inverted_index.introducing | 159 |
| abstract_inverted_index.recognition | 217 |
| abstract_inverted_index.traditional | 187 |
| abstract_inverted_index.data-loader, | 207 |
| abstract_inverted_index.information, | 157 |
| abstract_inverted_index.intermediate | 174 |
| abstract_inverted_index.observation, | 135 |
| abstract_inverted_index.representing | 9 |
| abstract_inverted_index.clip-specific | 152 |
| abstract_inverted_index.independently | 63 |
| abstract_inverted_index.redundancies. | 179 |
| abstract_inverted_index.task-oriented | 171 |
| abstract_inverted_index.representation | 142 |
| abstract_inverted_index.representations | 2, 82 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |