Towards Stability of Autoregressive Neural Operators Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2306.10619
Neural operators have proven to be a promising approach for modeling spatiotemporal systems in the physical sciences. However, training these models for large systems can be quite challenging as they incur significant computational and memory expense -- these systems are often forced to rely on autoregressive time-stepping of the neural network to predict future temporal states. While this is effective in managing costs, it can lead to uncontrolled error growth over time and eventual instability. We analyze the sources of this autoregressive error growth using prototypical neural operator models for physical systems and explore ways to mitigate it. We introduce architectural and application-specific improvements that allow for careful control of instability-inducing operations within these models without inflating the compute/memory expense. We present results on several scientific systems that include Navier-Stokes fluid flow, rotating shallow water, and a high-resolution global weather forecasting system. We demonstrate that applying our design principles to neural operators leads to significantly lower errors for long-term forecasts as well as longer time horizons without qualitative signs of divergence compared to the original models for these systems. We open-source our \href{https://github.com/mikemccabe210/stabilizing_neural_operators}{code} for reproducibility.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2306.10619
- https://arxiv.org/pdf/2306.10619
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4381564169
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4381564169Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2306.10619Digital Object Identifier
- Title
-
Towards Stability of Autoregressive Neural OperatorsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-18Full publication date if available
- Authors
-
Michael T. McCabe, Peter de B. Harrington, Shashank Subramanian, Jed BrownList of authors in order
- Landing page
-
https://arxiv.org/abs/2306.10619Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2306.10619Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2306.10619Direct OA link when available
- Concepts
-
Autoregressive model, Computer science, Artificial neural network, Divergence (linguistics), Stability (learning theory), Operator (biology), Recurrent neural network, Artificial intelligence, Machine learning, Mathematics, Econometrics, Philosophy, Gene, Chemistry, Repressor, Biochemistry, Linguistics, Transcription factorTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4381564169 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2306.10619 |
| ids.doi | https://doi.org/10.48550/arxiv.2306.10619 |
| ids.openalex | https://openalex.org/W4381564169 |
| fwci | 0.51088578 |
| type | preprint |
| title | Towards Stability of Autoregressive Neural Operators |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12026 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9767000079154968 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Explainable Artificial Intelligence (XAI) |
| topics[1].id | https://openalex.org/T11206 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9747999906539917 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Model Reduction and Neural Networks |
| topics[2].id | https://openalex.org/T13650 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9585999846458435 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Computational Physics and Python Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C159877910 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8397350311279297 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2202883 |
| concepts[0].display_name | Autoregressive model |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.690311849117279 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6541198492050171 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C207390915 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6139782071113586 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1230525 |
| concepts[3].display_name | Divergence (linguistics) |
| concepts[4].id | https://openalex.org/C112972136 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5176325440406799 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[4].display_name | Stability (learning theory) |
| concepts[5].id | https://openalex.org/C17020691 |
| concepts[5].level | 5 |
| concepts[5].score | 0.5176001787185669 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q139677 |
| concepts[5].display_name | Operator (biology) |
| concepts[6].id | https://openalex.org/C147168706 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4916918873786926 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[6].display_name | Recurrent neural network |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.366432785987854 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.313293993473053 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.15266475081443787 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C149782125 |
| concepts[10].level | 1 |
| concepts[10].score | 0.14029091596603394 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[10].display_name | Econometrics |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| concepts[12].id | https://openalex.org/C104317684 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[12].display_name | Gene |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C158448853 |
| concepts[14].level | 4 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q425218 |
| concepts[14].display_name | Repressor |
| concepts[15].id | https://openalex.org/C55493867 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[15].display_name | Biochemistry |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C86339819 |
| concepts[17].level | 3 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[17].display_name | Transcription factor |
| keywords[0].id | https://openalex.org/keywords/autoregressive-model |
| keywords[0].score | 0.8397350311279297 |
| keywords[0].display_name | Autoregressive model |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.690311849117279 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.6541198492050171 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/divergence |
| keywords[3].score | 0.6139782071113586 |
| keywords[3].display_name | Divergence (linguistics) |
| keywords[4].id | https://openalex.org/keywords/stability |
| keywords[4].score | 0.5176325440406799 |
| keywords[4].display_name | Stability (learning theory) |
| keywords[5].id | https://openalex.org/keywords/operator |
| keywords[5].score | 0.5176001787185669 |
| keywords[5].display_name | Operator (biology) |
| keywords[6].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[6].score | 0.4916918873786926 |
| keywords[6].display_name | Recurrent neural network |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.366432785987854 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.313293993473053 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.15266475081443787 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/econometrics |
| keywords[10].score | 0.14029091596603394 |
| keywords[10].display_name | Econometrics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2306.10619 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2306.10619 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2306.10619 |
| locations[1].id | doi:10.48550/arxiv.2306.10619 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2306.10619 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5039169226 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5715-9563 |
| authorships[0].author.display_name | Michael T. McCabe |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | McCabe, Michael |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5038095110 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0268-8630 |
| authorships[1].author.display_name | Peter de B. Harrington |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Harrington, Peter |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5064799932 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7191-2953 |
| authorships[2].author.display_name | Shashank Subramanian |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Subramanian, Shashank |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5073696890 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9945-0639 |
| authorships[3].author.display_name | Jed Brown |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Brown, Jed |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2306.10619 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards Stability of Autoregressive Neural Operators |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12026 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9767000079154968 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Explainable Artificial Intelligence (XAI) |
| related_works | https://openalex.org/W4298287631, https://openalex.org/W2953061907, https://openalex.org/W3034302643, https://openalex.org/W1847088711, https://openalex.org/W4225394202, https://openalex.org/W3036642985, https://openalex.org/W2964335273, https://openalex.org/W2982145560, https://openalex.org/W2326447594, https://openalex.org/W1997177483 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2306.10619 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2306.10619 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2306.10619 |
| primary_location.id | pmh:oai:arXiv.org:2306.10619 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2306.10619 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2306.10619 |
| publication_date | 2023-06-18 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 136 |
| abstract_inverted_index.-- | 36 |
| abstract_inverted_index.We | 75, 98, 120, 142, 179 |
| abstract_inverted_index.as | 28, 160, 162 |
| abstract_inverted_index.be | 5, 25 |
| abstract_inverted_index.in | 13, 60 |
| abstract_inverted_index.is | 58 |
| abstract_inverted_index.it | 63 |
| abstract_inverted_index.of | 47, 79, 109, 169 |
| abstract_inverted_index.on | 44, 123 |
| abstract_inverted_index.to | 4, 42, 51, 66, 95, 149, 153, 172 |
| abstract_inverted_index.and | 33, 72, 92, 101, 135 |
| abstract_inverted_index.are | 39 |
| abstract_inverted_index.can | 24, 64 |
| abstract_inverted_index.for | 9, 21, 89, 106, 157, 176, 183 |
| abstract_inverted_index.it. | 97 |
| abstract_inverted_index.our | 146, 181 |
| abstract_inverted_index.the | 14, 48, 77, 117, 173 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.lead | 65 |
| abstract_inverted_index.over | 70 |
| abstract_inverted_index.rely | 43 |
| abstract_inverted_index.that | 104, 127, 144 |
| abstract_inverted_index.they | 29 |
| abstract_inverted_index.this | 57, 80 |
| abstract_inverted_index.time | 71, 164 |
| abstract_inverted_index.ways | 94 |
| abstract_inverted_index.well | 161 |
| abstract_inverted_index.While | 56 |
| abstract_inverted_index.allow | 105 |
| abstract_inverted_index.error | 68, 82 |
| abstract_inverted_index.flow, | 131 |
| abstract_inverted_index.fluid | 130 |
| abstract_inverted_index.incur | 30 |
| abstract_inverted_index.large | 22 |
| abstract_inverted_index.leads | 152 |
| abstract_inverted_index.lower | 155 |
| abstract_inverted_index.often | 40 |
| abstract_inverted_index.quite | 26 |
| abstract_inverted_index.signs | 168 |
| abstract_inverted_index.these | 19, 37, 113, 177 |
| abstract_inverted_index.using | 84 |
| abstract_inverted_index.Neural | 0 |
| abstract_inverted_index.costs, | 62 |
| abstract_inverted_index.design | 147 |
| abstract_inverted_index.errors | 156 |
| abstract_inverted_index.forced | 41 |
| abstract_inverted_index.future | 53 |
| abstract_inverted_index.global | 138 |
| abstract_inverted_index.growth | 69, 83 |
| abstract_inverted_index.longer | 163 |
| abstract_inverted_index.memory | 34 |
| abstract_inverted_index.models | 20, 88, 114, 175 |
| abstract_inverted_index.neural | 49, 86, 150 |
| abstract_inverted_index.proven | 3 |
| abstract_inverted_index.water, | 134 |
| abstract_inverted_index.within | 112 |
| abstract_inverted_index.analyze | 76 |
| abstract_inverted_index.careful | 107 |
| abstract_inverted_index.control | 108 |
| abstract_inverted_index.expense | 35 |
| abstract_inverted_index.explore | 93 |
| abstract_inverted_index.include | 128 |
| abstract_inverted_index.network | 50 |
| abstract_inverted_index.predict | 52 |
| abstract_inverted_index.present | 121 |
| abstract_inverted_index.results | 122 |
| abstract_inverted_index.several | 124 |
| abstract_inverted_index.shallow | 133 |
| abstract_inverted_index.sources | 78 |
| abstract_inverted_index.states. | 55 |
| abstract_inverted_index.system. | 141 |
| abstract_inverted_index.systems | 12, 23, 38, 91, 126 |
| abstract_inverted_index.weather | 139 |
| abstract_inverted_index.without | 115, 166 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.applying | 145 |
| abstract_inverted_index.approach | 8 |
| abstract_inverted_index.compared | 171 |
| abstract_inverted_index.eventual | 73 |
| abstract_inverted_index.expense. | 119 |
| abstract_inverted_index.horizons | 165 |
| abstract_inverted_index.managing | 61 |
| abstract_inverted_index.mitigate | 96 |
| abstract_inverted_index.modeling | 10 |
| abstract_inverted_index.operator | 87 |
| abstract_inverted_index.original | 174 |
| abstract_inverted_index.physical | 15, 90 |
| abstract_inverted_index.rotating | 132 |
| abstract_inverted_index.systems. | 178 |
| abstract_inverted_index.temporal | 54 |
| abstract_inverted_index.training | 18 |
| abstract_inverted_index.effective | 59 |
| abstract_inverted_index.forecasts | 159 |
| abstract_inverted_index.inflating | 116 |
| abstract_inverted_index.introduce | 99 |
| abstract_inverted_index.long-term | 158 |
| abstract_inverted_index.operators | 1, 151 |
| abstract_inverted_index.promising | 7 |
| abstract_inverted_index.sciences. | 16 |
| abstract_inverted_index.divergence | 170 |
| abstract_inverted_index.operations | 111 |
| abstract_inverted_index.principles | 148 |
| abstract_inverted_index.scientific | 125 |
| abstract_inverted_index.challenging | 27 |
| abstract_inverted_index.demonstrate | 143 |
| abstract_inverted_index.forecasting | 140 |
| abstract_inverted_index.open-source | 180 |
| abstract_inverted_index.qualitative | 167 |
| abstract_inverted_index.significant | 31 |
| abstract_inverted_index.improvements | 103 |
| abstract_inverted_index.instability. | 74 |
| abstract_inverted_index.prototypical | 85 |
| abstract_inverted_index.uncontrolled | 67 |
| abstract_inverted_index.Navier-Stokes | 129 |
| abstract_inverted_index.architectural | 100 |
| abstract_inverted_index.computational | 32 |
| abstract_inverted_index.significantly | 154 |
| abstract_inverted_index.time-stepping | 46 |
| abstract_inverted_index.autoregressive | 45, 81 |
| abstract_inverted_index.compute/memory | 118 |
| abstract_inverted_index.spatiotemporal | 11 |
| abstract_inverted_index.high-resolution | 137 |
| abstract_inverted_index.reproducibility. | 184 |
| abstract_inverted_index.application-specific | 102 |
| abstract_inverted_index.instability-inducing | 110 |
| abstract_inverted_index.\href{https://github.com/mikemccabe210/stabilizing_neural_operators}{code} | 182 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.66276742 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |