Towards Trustworthy Web Attack Detection: An Uncertainty-Aware Ensemble Deep Kernel Learning Model Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.07725
Web attacks are one of the major and most persistent forms of cyber threats, which bring huge costs and losses to web application-based businesses. Various detection methods, such as signature-based, machine learning-based, and deep learning-based, have been proposed to identify web attacks. However, these methods either (1) heavily rely on accurate and complete rule design and feature engineering, which may not adapt to fast-evolving attacks, or (2) fail to estimate model uncertainty, which is essential to the trustworthiness of the prediction made by the model. In this study, we proposed an Uncertainty-aware Ensemble Deep Kernel Learning (UEDKL) model to detect web attacks from HTTP request payload data with the model uncertainty captured from the perspective of both data distribution and model parameters. The proposed UEDKL utilizes a deep kernel learning model to distinguish normal HTTP requests from different types of web attacks with model uncertainty estimated from data distribution perspective. Multiple deep kernel learning models were trained as base learners to capture the model uncertainty from model parameters perspective. An attention-based ensemble learning approach was designed to effectively integrate base learners' predictions and model uncertainty. We also proposed a new metric named High Uncertainty Ratio-F Score Curve to evaluate model uncertainty estimation. Experiments on BDCI and SRBH datasets demonstrated that the proposed UEDKL framework yields significant improvement in both web attack detection performance and uncertainty estimation quality compared to benchmark models.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.07725
- https://arxiv.org/pdf/2410.07725
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403364762
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403364762Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.07725Digital Object Identifier
- Title
-
Towards Trustworthy Web Attack Detection: An Uncertainty-Aware Ensemble Deep Kernel Learning ModelWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-10Full publication date if available
- Authors
-
Yonghang Zhou, Hongyi Zhu, Yidong Chai, Yuanchun Jiang, Yezheng LiuList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.07725Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.07725Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.07725Direct OA link when available
- Concepts
-
Trustworthiness, Computer science, Ensemble learning, Artificial intelligence, Kernel (algebra), Deep learning, Machine learning, Computer security, Mathematics, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403364762 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.07725 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.07725 |
| ids.openalex | https://openalex.org/W4403364762 |
| fwci | |
| type | preprint |
| title | Towards Trustworthy Web Attack Detection: An Uncertainty-Aware Ensemble Deep Kernel Learning Model |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9958000183105469 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T11241 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.98089998960495 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Advanced Malware Detection Techniques |
| topics[2].id | https://openalex.org/T12479 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9531000256538391 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Web Application Security Vulnerabilities |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C153701036 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7439272403717041 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q659974 |
| concepts[0].display_name | Trustworthiness |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7326459884643555 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C45942800 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6408141255378723 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[2].display_name | Ensemble learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4962623715400696 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C74193536 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4782359004020691 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[4].display_name | Kernel (algebra) |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43637973070144653 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3884487748146057 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C38652104 |
| concepts[7].level | 1 |
| concepts[7].score | 0.253592312335968 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[7].display_name | Computer security |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.08380457758903503 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C114614502 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[9].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/trustworthiness |
| keywords[0].score | 0.7439272403717041 |
| keywords[0].display_name | Trustworthiness |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7326459884643555 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/ensemble-learning |
| keywords[2].score | 0.6408141255378723 |
| keywords[2].display_name | Ensemble learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4962623715400696 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/kernel |
| keywords[4].score | 0.4782359004020691 |
| keywords[4].display_name | Kernel (algebra) |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.43637973070144653 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.3884487748146057 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/computer-security |
| keywords[7].score | 0.253592312335968 |
| keywords[7].display_name | Computer security |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.08380457758903503 |
| keywords[8].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.07725 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.07725 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.07725 |
| locations[1].id | doi:10.48550/arxiv.2410.07725 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.07725 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5003026518 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6361-1456 |
| authorships[0].author.display_name | Yonghang Zhou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhou, Yonghang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5004908593 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9643-0790 |
| authorships[1].author.display_name | Hongyi Zhu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhu, Hongyi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5030014366 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0260-7589 |
| authorships[2].author.display_name | Yidong Chai |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chai, Yidong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5004103125 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0886-3647 |
| authorships[3].author.display_name | Yuanchun Jiang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jiang, Yuanchun |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5030946475 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9193-5236 |
| authorships[4].author.display_name | Yezheng Liu |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Liu, Yezheng |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.07725 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-13T00:00:00 |
| display_name | Towards Trustworthy Web Attack Detection: An Uncertainty-Aware Ensemble Deep Kernel Learning Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9958000183105469 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W4380075502, https://openalex.org/W4376643315, https://openalex.org/W4324137541, https://openalex.org/W2900445707, https://openalex.org/W3124943098, https://openalex.org/W4308112567, https://openalex.org/W3162132941, https://openalex.org/W4285741730, https://openalex.org/W1191482210, https://openalex.org/W4285046548 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.07725 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.07725 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.07725 |
| primary_location.id | pmh:oai:arXiv.org:2410.07725 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.07725 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.07725 |
| publication_date | 2024-10-10 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 126, 188 |
| abstract_inverted_index.An | 169 |
| abstract_inverted_index.In | 85 |
| abstract_inverted_index.We | 185 |
| abstract_inverted_index.an | 90 |
| abstract_inverted_index.as | 28, 157 |
| abstract_inverted_index.by | 82 |
| abstract_inverted_index.in | 217 |
| abstract_inverted_index.is | 73 |
| abstract_inverted_index.of | 4, 11, 78, 115, 139 |
| abstract_inverted_index.on | 49, 203 |
| abstract_inverted_index.or | 65 |
| abstract_inverted_index.to | 20, 38, 62, 68, 75, 98, 131, 160, 176, 197, 228 |
| abstract_inverted_index.we | 88 |
| abstract_inverted_index.(1) | 46 |
| abstract_inverted_index.(2) | 66 |
| abstract_inverted_index.The | 122 |
| abstract_inverted_index.Web | 0 |
| abstract_inverted_index.and | 7, 18, 32, 51, 55, 119, 182, 205, 223 |
| abstract_inverted_index.are | 2 |
| abstract_inverted_index.may | 59 |
| abstract_inverted_index.new | 189 |
| abstract_inverted_index.not | 60 |
| abstract_inverted_index.one | 3 |
| abstract_inverted_index.the | 5, 76, 79, 83, 108, 113, 162, 210 |
| abstract_inverted_index.was | 174 |
| abstract_inverted_index.web | 21, 40, 100, 140, 219 |
| abstract_inverted_index.BDCI | 204 |
| abstract_inverted_index.Deep | 93 |
| abstract_inverted_index.HTTP | 103, 134 |
| abstract_inverted_index.High | 192 |
| abstract_inverted_index.SRBH | 206 |
| abstract_inverted_index.also | 186 |
| abstract_inverted_index.base | 158, 179 |
| abstract_inverted_index.been | 36 |
| abstract_inverted_index.both | 116, 218 |
| abstract_inverted_index.data | 106, 117, 147 |
| abstract_inverted_index.deep | 33, 127, 151 |
| abstract_inverted_index.fail | 67 |
| abstract_inverted_index.from | 102, 112, 136, 146, 165 |
| abstract_inverted_index.have | 35 |
| abstract_inverted_index.huge | 16 |
| abstract_inverted_index.made | 81 |
| abstract_inverted_index.most | 8 |
| abstract_inverted_index.rely | 48 |
| abstract_inverted_index.rule | 53 |
| abstract_inverted_index.such | 27 |
| abstract_inverted_index.that | 209 |
| abstract_inverted_index.this | 86 |
| abstract_inverted_index.were | 155 |
| abstract_inverted_index.with | 107, 142 |
| abstract_inverted_index.Curve | 196 |
| abstract_inverted_index.Score | 195 |
| abstract_inverted_index.UEDKL | 124, 212 |
| abstract_inverted_index.adapt | 61 |
| abstract_inverted_index.bring | 15 |
| abstract_inverted_index.costs | 17 |
| abstract_inverted_index.cyber | 12 |
| abstract_inverted_index.forms | 10 |
| abstract_inverted_index.major | 6 |
| abstract_inverted_index.model | 70, 97, 109, 120, 130, 143, 163, 166, 183, 199 |
| abstract_inverted_index.named | 191 |
| abstract_inverted_index.these | 43 |
| abstract_inverted_index.types | 138 |
| abstract_inverted_index.which | 14, 58, 72 |
| abstract_inverted_index.Kernel | 94 |
| abstract_inverted_index.attack | 220 |
| abstract_inverted_index.design | 54 |
| abstract_inverted_index.detect | 99 |
| abstract_inverted_index.either | 45 |
| abstract_inverted_index.kernel | 128, 152 |
| abstract_inverted_index.losses | 19 |
| abstract_inverted_index.metric | 190 |
| abstract_inverted_index.model. | 84 |
| abstract_inverted_index.models | 154 |
| abstract_inverted_index.normal | 133 |
| abstract_inverted_index.study, | 87 |
| abstract_inverted_index.yields | 214 |
| abstract_inverted_index.(UEDKL) | 96 |
| abstract_inverted_index.Ratio-F | 194 |
| abstract_inverted_index.Various | 24 |
| abstract_inverted_index.attacks | 1, 101, 141 |
| abstract_inverted_index.capture | 161 |
| abstract_inverted_index.feature | 56 |
| abstract_inverted_index.heavily | 47 |
| abstract_inverted_index.machine | 30 |
| abstract_inverted_index.methods | 44 |
| abstract_inverted_index.models. | 230 |
| abstract_inverted_index.payload | 105 |
| abstract_inverted_index.quality | 226 |
| abstract_inverted_index.request | 104 |
| abstract_inverted_index.trained | 156 |
| abstract_inverted_index.Ensemble | 92 |
| abstract_inverted_index.However, | 42 |
| abstract_inverted_index.Learning | 95 |
| abstract_inverted_index.Multiple | 150 |
| abstract_inverted_index.accurate | 50 |
| abstract_inverted_index.approach | 173 |
| abstract_inverted_index.attacks, | 64 |
| abstract_inverted_index.attacks. | 41 |
| abstract_inverted_index.captured | 111 |
| abstract_inverted_index.compared | 227 |
| abstract_inverted_index.complete | 52 |
| abstract_inverted_index.datasets | 207 |
| abstract_inverted_index.designed | 175 |
| abstract_inverted_index.ensemble | 171 |
| abstract_inverted_index.estimate | 69 |
| abstract_inverted_index.evaluate | 198 |
| abstract_inverted_index.identify | 39 |
| abstract_inverted_index.learners | 159 |
| abstract_inverted_index.learning | 129, 153, 172 |
| abstract_inverted_index.methods, | 26 |
| abstract_inverted_index.proposed | 37, 89, 123, 187, 211 |
| abstract_inverted_index.requests | 135 |
| abstract_inverted_index.threats, | 13 |
| abstract_inverted_index.utilizes | 125 |
| abstract_inverted_index.benchmark | 229 |
| abstract_inverted_index.detection | 25, 221 |
| abstract_inverted_index.different | 137 |
| abstract_inverted_index.essential | 74 |
| abstract_inverted_index.estimated | 145 |
| abstract_inverted_index.framework | 213 |
| abstract_inverted_index.integrate | 178 |
| abstract_inverted_index.learners' | 180 |
| abstract_inverted_index.estimation | 225 |
| abstract_inverted_index.parameters | 167 |
| abstract_inverted_index.persistent | 9 |
| abstract_inverted_index.prediction | 80 |
| abstract_inverted_index.Experiments | 202 |
| abstract_inverted_index.Uncertainty | 193 |
| abstract_inverted_index.businesses. | 23 |
| abstract_inverted_index.distinguish | 132 |
| abstract_inverted_index.effectively | 177 |
| abstract_inverted_index.estimation. | 201 |
| abstract_inverted_index.improvement | 216 |
| abstract_inverted_index.parameters. | 121 |
| abstract_inverted_index.performance | 222 |
| abstract_inverted_index.perspective | 114 |
| abstract_inverted_index.predictions | 181 |
| abstract_inverted_index.significant | 215 |
| abstract_inverted_index.uncertainty | 110, 144, 164, 200, 224 |
| abstract_inverted_index.demonstrated | 208 |
| abstract_inverted_index.distribution | 118, 148 |
| abstract_inverted_index.engineering, | 57 |
| abstract_inverted_index.perspective. | 149, 168 |
| abstract_inverted_index.uncertainty, | 71 |
| abstract_inverted_index.uncertainty. | 184 |
| abstract_inverted_index.fast-evolving | 63 |
| abstract_inverted_index.attention-based | 170 |
| abstract_inverted_index.learning-based, | 31, 34 |
| abstract_inverted_index.trustworthiness | 77 |
| abstract_inverted_index.signature-based, | 29 |
| abstract_inverted_index.Uncertainty-aware | 91 |
| abstract_inverted_index.application-based | 22 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |