Towards Unsupervised Visual Reasoning: Do Off-The-Shelf Features Know How to Reason? Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2212.10292
Recent advances in visual representation learning allowed to build an abundance of powerful off-the-shelf features that are ready-to-use for numerous downstream tasks. This work aims to assess how well these features preserve information about the objects, such as their spatial location, their visual properties and their relative relationships. We propose to do so by evaluating them in the context of visual reasoning, where multiple objects with complex relationships and different attributes are at play. More specifically, we introduce a protocol to evaluate visual representations for the task of Visual Question Answering. In order to decouple visual feature extraction from reasoning, we design a specific attention-based reasoning module which is trained on the frozen visual representations to be evaluated, in a spirit similar to standard feature evaluations relying on shallow networks. We compare two types of visual representations, densely extracted local features and object-centric ones, against the performances of a perfect image representation using ground truth. Our main findings are two-fold. First, despite excellent performances on classical proxy tasks, such representations fall short for solving complex reasoning problem. Second, object-centric features better preserve the critical information necessary to perform visual reasoning. In our proposed framework we show how to methodologically approach this evaluation.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2212.10292
- https://arxiv.org/pdf/2212.10292
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4312091344
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4312091344Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2212.10292Digital Object Identifier
- Title
-
Towards Unsupervised Visual Reasoning: Do Off-The-Shelf Features Know How to Reason?Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-20Full publication date if available
- Authors
-
Monika Wysoczańska, Tom Monnier, T. P. Trzcinski, David PicardList of authors in order
- Landing page
-
https://arxiv.org/abs/2212.10292Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2212.10292Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2212.10292Direct OA link when available
- Concepts
-
Computer science, Visual reasoning, Artificial intelligence, Representation (politics), Context (archaeology), Object (grammar), Cognitive neuroscience of visual object recognition, Spatial intelligence, Visualization, Task (project management), Feature (linguistics), Visual Objects, Analytic reasoning, Machine learning, Natural language processing, Reasoning system, Perception, Psychology, Philosophy, Biology, Political science, Law, Management, Linguistics, Neuroscience, Politics, Economics, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4312091344 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2212.10292 |
| ids.doi | https://doi.org/10.48550/arxiv.2212.10292 |
| ids.openalex | https://openalex.org/W4312091344 |
| fwci | |
| type | preprint |
| title | Towards Unsupervised Visual Reasoning: Do Off-The-Shelf Features Know How to Reason? |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9818000197410583 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T11605 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9674999713897705 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Visual Attention and Saliency Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.73170006275177 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2777508537 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6414449214935303 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7936620 |
| concepts[1].display_name | Visual reasoning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6281846761703491 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2776359362 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5452573299407959 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[3].display_name | Representation (politics) |
| concepts[4].id | https://openalex.org/C2779343474 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5371452569961548 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[4].display_name | Context (archaeology) |
| concepts[5].id | https://openalex.org/C2781238097 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5160760283470154 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[5].display_name | Object (grammar) |
| concepts[6].id | https://openalex.org/C64876066 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4759865999221802 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5141226 |
| concepts[6].display_name | Cognitive neuroscience of visual object recognition |
| concepts[7].id | https://openalex.org/C155911833 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46874549984931946 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3817354 |
| concepts[7].display_name | Spatial intelligence |
| concepts[8].id | https://openalex.org/C36464697 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45052653551101685 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[8].display_name | Visualization |
| concepts[9].id | https://openalex.org/C2780451532 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4503372013568878 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[9].display_name | Task (project management) |
| concepts[10].id | https://openalex.org/C2776401178 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4319611191749573 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[10].display_name | Feature (linguistics) |
| concepts[11].id | https://openalex.org/C2780103172 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4199483096599579 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1309721 |
| concepts[11].display_name | Visual Objects |
| concepts[12].id | https://openalex.org/C103057564 |
| concepts[12].level | 3 |
| concepts[12].score | 0.4173809587955475 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q4751139 |
| concepts[12].display_name | Analytic reasoning |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.39615508913993835 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C204321447 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3257433772087097 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[14].display_name | Natural language processing |
| concepts[15].id | https://openalex.org/C89288958 |
| concepts[15].level | 2 |
| concepts[15].score | 0.30707812309265137 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7301504 |
| concepts[15].display_name | Reasoning system |
| concepts[16].id | https://openalex.org/C26760741 |
| concepts[16].level | 2 |
| concepts[16].score | 0.2572935223579407 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[16].display_name | Perception |
| concepts[17].id | https://openalex.org/C15744967 |
| concepts[17].level | 0 |
| concepts[17].score | 0.07543793320655823 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[17].display_name | Psychology |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| concepts[19].id | https://openalex.org/C86803240 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[19].display_name | Biology |
| concepts[20].id | https://openalex.org/C17744445 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[20].display_name | Political science |
| concepts[21].id | https://openalex.org/C199539241 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[21].display_name | Law |
| concepts[22].id | https://openalex.org/C187736073 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[22].display_name | Management |
| concepts[23].id | https://openalex.org/C41895202 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[23].display_name | Linguistics |
| concepts[24].id | https://openalex.org/C169760540 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[24].display_name | Neuroscience |
| concepts[25].id | https://openalex.org/C94625758 |
| concepts[25].level | 2 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[25].display_name | Politics |
| concepts[26].id | https://openalex.org/C162324750 |
| concepts[26].level | 0 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[26].display_name | Economics |
| concepts[27].id | https://openalex.org/C151730666 |
| concepts[27].level | 1 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[27].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.73170006275177 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/visual-reasoning |
| keywords[1].score | 0.6414449214935303 |
| keywords[1].display_name | Visual reasoning |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6281846761703491 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/representation |
| keywords[3].score | 0.5452573299407959 |
| keywords[3].display_name | Representation (politics) |
| keywords[4].id | https://openalex.org/keywords/context |
| keywords[4].score | 0.5371452569961548 |
| keywords[4].display_name | Context (archaeology) |
| keywords[5].id | https://openalex.org/keywords/object |
| keywords[5].score | 0.5160760283470154 |
| keywords[5].display_name | Object (grammar) |
| keywords[6].id | https://openalex.org/keywords/cognitive-neuroscience-of-visual-object-recognition |
| keywords[6].score | 0.4759865999221802 |
| keywords[6].display_name | Cognitive neuroscience of visual object recognition |
| keywords[7].id | https://openalex.org/keywords/spatial-intelligence |
| keywords[7].score | 0.46874549984931946 |
| keywords[7].display_name | Spatial intelligence |
| keywords[8].id | https://openalex.org/keywords/visualization |
| keywords[8].score | 0.45052653551101685 |
| keywords[8].display_name | Visualization |
| keywords[9].id | https://openalex.org/keywords/task |
| keywords[9].score | 0.4503372013568878 |
| keywords[9].display_name | Task (project management) |
| keywords[10].id | https://openalex.org/keywords/feature |
| keywords[10].score | 0.4319611191749573 |
| keywords[10].display_name | Feature (linguistics) |
| keywords[11].id | https://openalex.org/keywords/visual-objects |
| keywords[11].score | 0.4199483096599579 |
| keywords[11].display_name | Visual Objects |
| keywords[12].id | https://openalex.org/keywords/analytic-reasoning |
| keywords[12].score | 0.4173809587955475 |
| keywords[12].display_name | Analytic reasoning |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.39615508913993835 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/natural-language-processing |
| keywords[14].score | 0.3257433772087097 |
| keywords[14].display_name | Natural language processing |
| keywords[15].id | https://openalex.org/keywords/reasoning-system |
| keywords[15].score | 0.30707812309265137 |
| keywords[15].display_name | Reasoning system |
| keywords[16].id | https://openalex.org/keywords/perception |
| keywords[16].score | 0.2572935223579407 |
| keywords[16].display_name | Perception |
| keywords[17].id | https://openalex.org/keywords/psychology |
| keywords[17].score | 0.07543793320655823 |
| keywords[17].display_name | Psychology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2212.10292 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2212.10292 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2212.10292 |
| locations[1].id | doi:10.48550/arxiv.2212.10292 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2212.10292 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5057907139 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7785-2277 |
| authorships[0].author.display_name | Monika Wysoczańska |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wysoczańska, Monika |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5075666099 |
| authorships[1].author.orcid | https://orcid.org/0009-0008-1937-6506 |
| authorships[1].author.display_name | Tom Monnier |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Monnier, Tom |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5070627781 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1486-8906 |
| authorships[2].author.display_name | T. P. Trzcinski |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Trzciński, Tomasz |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5002574498 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6296-4222 |
| authorships[3].author.display_name | David Picard |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Picard, David |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2212.10292 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-01-04T00:00:00 |
| display_name | Towards Unsupervised Visual Reasoning: Do Off-The-Shelf Features Know How to Reason? |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W3081308103, https://openalex.org/W2113245685, https://openalex.org/W2395908292, https://openalex.org/W1574950926, https://openalex.org/W2376002020, https://openalex.org/W2142763871, https://openalex.org/W607204158, https://openalex.org/W4385571345, https://openalex.org/W94330105, https://openalex.org/W2039143072 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2212.10292 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2212.10292 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2212.10292 |
| primary_location.id | pmh:oai:arXiv.org:2212.10292 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2212.10292 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2212.10292 |
| publication_date | 2022-12-20 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 78, 102, 119, 148 |
| abstract_inverted_index.In | 91, 190 |
| abstract_inverted_index.We | 48, 130 |
| abstract_inverted_index.an | 9 |
| abstract_inverted_index.as | 37 |
| abstract_inverted_index.at | 72 |
| abstract_inverted_index.be | 116 |
| abstract_inverted_index.by | 53 |
| abstract_inverted_index.do | 51 |
| abstract_inverted_index.in | 2, 56, 118 |
| abstract_inverted_index.is | 108 |
| abstract_inverted_index.of | 11, 59, 87, 134, 147 |
| abstract_inverted_index.on | 110, 127, 164 |
| abstract_inverted_index.so | 52 |
| abstract_inverted_index.to | 7, 25, 50, 80, 93, 115, 122, 186, 197 |
| abstract_inverted_index.we | 76, 100, 194 |
| abstract_inverted_index.Our | 155 |
| abstract_inverted_index.and | 44, 68, 141 |
| abstract_inverted_index.are | 16, 71, 158 |
| abstract_inverted_index.for | 18, 84, 172 |
| abstract_inverted_index.how | 27, 196 |
| abstract_inverted_index.our | 191 |
| abstract_inverted_index.the | 34, 57, 85, 111, 145, 182 |
| abstract_inverted_index.two | 132 |
| abstract_inverted_index.More | 74 |
| abstract_inverted_index.This | 22 |
| abstract_inverted_index.aims | 24 |
| abstract_inverted_index.fall | 170 |
| abstract_inverted_index.from | 98 |
| abstract_inverted_index.main | 156 |
| abstract_inverted_index.show | 195 |
| abstract_inverted_index.such | 36, 168 |
| abstract_inverted_index.task | 86 |
| abstract_inverted_index.that | 15 |
| abstract_inverted_index.them | 55 |
| abstract_inverted_index.this | 200 |
| abstract_inverted_index.well | 28 |
| abstract_inverted_index.with | 65 |
| abstract_inverted_index.work | 23 |
| abstract_inverted_index.about | 33 |
| abstract_inverted_index.build | 8 |
| abstract_inverted_index.image | 150 |
| abstract_inverted_index.local | 139 |
| abstract_inverted_index.ones, | 143 |
| abstract_inverted_index.order | 92 |
| abstract_inverted_index.play. | 73 |
| abstract_inverted_index.proxy | 166 |
| abstract_inverted_index.short | 171 |
| abstract_inverted_index.their | 38, 41, 45 |
| abstract_inverted_index.these | 29 |
| abstract_inverted_index.types | 133 |
| abstract_inverted_index.using | 152 |
| abstract_inverted_index.where | 62 |
| abstract_inverted_index.which | 107 |
| abstract_inverted_index.First, | 160 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.Visual | 88 |
| abstract_inverted_index.assess | 26 |
| abstract_inverted_index.better | 180 |
| abstract_inverted_index.design | 101 |
| abstract_inverted_index.frozen | 112 |
| abstract_inverted_index.ground | 153 |
| abstract_inverted_index.module | 106 |
| abstract_inverted_index.spirit | 120 |
| abstract_inverted_index.tasks, | 167 |
| abstract_inverted_index.tasks. | 21 |
| abstract_inverted_index.truth. | 154 |
| abstract_inverted_index.visual | 3, 42, 60, 82, 95, 113, 135, 188 |
| abstract_inverted_index.Second, | 177 |
| abstract_inverted_index.against | 144 |
| abstract_inverted_index.allowed | 6 |
| abstract_inverted_index.compare | 131 |
| abstract_inverted_index.complex | 66, 174 |
| abstract_inverted_index.context | 58 |
| abstract_inverted_index.densely | 137 |
| abstract_inverted_index.despite | 161 |
| abstract_inverted_index.feature | 96, 124 |
| abstract_inverted_index.objects | 64 |
| abstract_inverted_index.perfect | 149 |
| abstract_inverted_index.perform | 187 |
| abstract_inverted_index.propose | 49 |
| abstract_inverted_index.relying | 126 |
| abstract_inverted_index.shallow | 128 |
| abstract_inverted_index.similar | 121 |
| abstract_inverted_index.solving | 173 |
| abstract_inverted_index.spatial | 39 |
| abstract_inverted_index.trained | 109 |
| abstract_inverted_index.Question | 89 |
| abstract_inverted_index.advances | 1 |
| abstract_inverted_index.approach | 199 |
| abstract_inverted_index.critical | 183 |
| abstract_inverted_index.decouple | 94 |
| abstract_inverted_index.evaluate | 81 |
| abstract_inverted_index.features | 14, 30, 140, 179 |
| abstract_inverted_index.findings | 157 |
| abstract_inverted_index.learning | 5 |
| abstract_inverted_index.multiple | 63 |
| abstract_inverted_index.numerous | 19 |
| abstract_inverted_index.objects, | 35 |
| abstract_inverted_index.powerful | 12 |
| abstract_inverted_index.preserve | 31, 181 |
| abstract_inverted_index.problem. | 176 |
| abstract_inverted_index.proposed | 192 |
| abstract_inverted_index.protocol | 79 |
| abstract_inverted_index.relative | 46 |
| abstract_inverted_index.specific | 103 |
| abstract_inverted_index.standard | 123 |
| abstract_inverted_index.abundance | 10 |
| abstract_inverted_index.classical | 165 |
| abstract_inverted_index.different | 69 |
| abstract_inverted_index.excellent | 162 |
| abstract_inverted_index.extracted | 138 |
| abstract_inverted_index.framework | 193 |
| abstract_inverted_index.introduce | 77 |
| abstract_inverted_index.location, | 40 |
| abstract_inverted_index.necessary | 185 |
| abstract_inverted_index.networks. | 129 |
| abstract_inverted_index.reasoning | 105, 175 |
| abstract_inverted_index.two-fold. | 159 |
| abstract_inverted_index.Answering. | 90 |
| abstract_inverted_index.attributes | 70 |
| abstract_inverted_index.downstream | 20 |
| abstract_inverted_index.evaluated, | 117 |
| abstract_inverted_index.evaluating | 54 |
| abstract_inverted_index.extraction | 97 |
| abstract_inverted_index.properties | 43 |
| abstract_inverted_index.reasoning, | 61, 99 |
| abstract_inverted_index.reasoning. | 189 |
| abstract_inverted_index.evaluation. | 201 |
| abstract_inverted_index.evaluations | 125 |
| abstract_inverted_index.information | 32, 184 |
| abstract_inverted_index.performances | 146, 163 |
| abstract_inverted_index.ready-to-use | 17 |
| abstract_inverted_index.off-the-shelf | 13 |
| abstract_inverted_index.relationships | 67 |
| abstract_inverted_index.specifically, | 75 |
| abstract_inverted_index.object-centric | 142, 178 |
| abstract_inverted_index.relationships. | 47 |
| abstract_inverted_index.representation | 4, 151 |
| abstract_inverted_index.attention-based | 104 |
| abstract_inverted_index.representations | 83, 114, 169 |
| abstract_inverted_index.methodologically | 198 |
| abstract_inverted_index.representations, | 136 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |