Towards Zero-shot Commonsense Reasoning with Self-supervised Refinement of Language Models Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2021.emnlp-main.688
Can we get existing language models and refine them for zero-shot commonsense reasoning? This paper presents an initial study exploring the feasibility of zero-shot commonsense reasoning for the Winograd Schema Challenge by formulating the task as self-supervised refinement of a pre-trained language model. In contrast to previous studies that rely on fine-tuning annotated datasets, we seek to boost conceptualization via loss landscape refinement. To this end, we propose a novel self-supervised learning approach that refines the language model utilizing a set of linguistic perturbations of similar concept relationships. Empirical analysis of our conceptually simple framework demonstrates the viability of zero-shot commonsense reasoning on multiple benchmarks.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/2021.emnlp-main.688
- https://aclanthology.org/2021.emnlp-main.688.pdf
- OA Status
- hybrid
- Cited By
- 4
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3199329183
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3199329183Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/2021.emnlp-main.688Digital Object Identifier
- Title
-
Towards Zero-shot Commonsense Reasoning with Self-supervised Refinement of Language ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Tassilo Klein, Moin NabiList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/2021.emnlp-main.688Publisher landing page
- PDF URL
-
https://aclanthology.org/2021.emnlp-main.688.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://aclanthology.org/2021.emnlp-main.688.pdfDirect OA link when available
- Concepts
-
Commonsense reasoning, Computer science, Conceptualization, Artificial intelligence, Natural language processing, Schema (genetic algorithms), Commonsense knowledge, Language model, Zero (linguistics), Language understanding, Simple (philosophy), Task (project management), Machine learning, Knowledge-based systems, Linguistics, Epistemology, Management, Economics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3199329183 |
|---|---|
| doi | https://doi.org/10.18653/v1/2021.emnlp-main.688 |
| ids.doi | https://doi.org/10.18653/v1/2021.emnlp-main.688 |
| ids.mag | 3199329183 |
| ids.openalex | https://openalex.org/W3199329183 |
| fwci | 0.49047883 |
| type | article |
| title | Towards Zero-shot Commonsense Reasoning with Self-supervised Refinement of Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9950000047683716 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9909999966621399 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C193221554 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8996740579605103 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5153664 |
| concepts[0].display_name | Commonsense reasoning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7863439917564392 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C90734943 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6575955152511597 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17008777 |
| concepts[2].display_name | Conceptualization |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6226343512535095 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C204321447 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5712796449661255 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[4].display_name | Natural language processing |
| concepts[5].id | https://openalex.org/C52146309 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5689194202423096 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7431116 |
| concepts[5].display_name | Schema (genetic algorithms) |
| concepts[6].id | https://openalex.org/C30542707 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5541743040084839 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1603203 |
| concepts[6].display_name | Commonsense knowledge |
| concepts[7].id | https://openalex.org/C137293760 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5301916003227234 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3621696 |
| concepts[7].display_name | Language model |
| concepts[8].id | https://openalex.org/C2780813799 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5052881836891174 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3274237 |
| concepts[8].display_name | Zero (linguistics) |
| concepts[9].id | https://openalex.org/C2983448237 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46674686670303345 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1078276 |
| concepts[9].display_name | Language understanding |
| concepts[10].id | https://openalex.org/C2780586882 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4587753713130951 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7520643 |
| concepts[10].display_name | Simple (philosophy) |
| concepts[11].id | https://openalex.org/C2780451532 |
| concepts[11].level | 2 |
| concepts[11].score | 0.44103577733039856 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[11].display_name | Task (project management) |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3038237690925598 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C115925183 |
| concepts[13].level | 2 |
| concepts[13].score | 0.10254150629043579 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1412694 |
| concepts[13].display_name | Knowledge-based systems |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.09929147362709045 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| concepts[15].id | https://openalex.org/C111472728 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[15].display_name | Epistemology |
| concepts[16].id | https://openalex.org/C187736073 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[16].display_name | Management |
| concepts[17].id | https://openalex.org/C162324750 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[17].display_name | Economics |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/commonsense-reasoning |
| keywords[0].score | 0.8996740579605103 |
| keywords[0].display_name | Commonsense reasoning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7863439917564392 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/conceptualization |
| keywords[2].score | 0.6575955152511597 |
| keywords[2].display_name | Conceptualization |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6226343512535095 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/natural-language-processing |
| keywords[4].score | 0.5712796449661255 |
| keywords[4].display_name | Natural language processing |
| keywords[5].id | https://openalex.org/keywords/schema |
| keywords[5].score | 0.5689194202423096 |
| keywords[5].display_name | Schema (genetic algorithms) |
| keywords[6].id | https://openalex.org/keywords/commonsense-knowledge |
| keywords[6].score | 0.5541743040084839 |
| keywords[6].display_name | Commonsense knowledge |
| keywords[7].id | https://openalex.org/keywords/language-model |
| keywords[7].score | 0.5301916003227234 |
| keywords[7].display_name | Language model |
| keywords[8].id | https://openalex.org/keywords/zero |
| keywords[8].score | 0.5052881836891174 |
| keywords[8].display_name | Zero (linguistics) |
| keywords[9].id | https://openalex.org/keywords/language-understanding |
| keywords[9].score | 0.46674686670303345 |
| keywords[9].display_name | Language understanding |
| keywords[10].id | https://openalex.org/keywords/simple |
| keywords[10].score | 0.4587753713130951 |
| keywords[10].display_name | Simple (philosophy) |
| keywords[11].id | https://openalex.org/keywords/task |
| keywords[11].score | 0.44103577733039856 |
| keywords[11].display_name | Task (project management) |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.3038237690925598 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/knowledge-based-systems |
| keywords[13].score | 0.10254150629043579 |
| keywords[13].display_name | Knowledge-based systems |
| keywords[14].id | https://openalex.org/keywords/linguistics |
| keywords[14].score | 0.09929147362709045 |
| keywords[14].display_name | Linguistics |
| language | en |
| locations[0].id | doi:10.18653/v1/2021.emnlp-main.688 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4363608991 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://aclanthology.org/2021.emnlp-main.688.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/2021.emnlp-main.688 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5023876634 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0631-2940 |
| authorships[0].author.display_name | Tassilo Klein |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210133614 |
| authorships[0].affiliations[0].raw_affiliation_string | SAP AI Research |
| authorships[0].institutions[0].id | https://openalex.org/I4210133614 |
| authorships[0].institutions[0].ror | https://ror.org/04k7gd586 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210132444, https://openalex.org/I4210133614 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Systems, Applications & Products in Data Processing (United Kingdom) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tassilo Klein |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | SAP AI Research |
| authorships[1].author.id | https://openalex.org/A5001459748 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7559-9888 |
| authorships[1].author.display_name | Moin Nabi |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210133614 |
| authorships[1].affiliations[0].raw_affiliation_string | SAP AI Research |
| authorships[1].institutions[0].id | https://openalex.org/I4210133614 |
| authorships[1].institutions[0].ror | https://ror.org/04k7gd586 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210132444, https://openalex.org/I4210133614 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Systems, Applications & Products in Data Processing (United Kingdom) |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Moin Nabi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | SAP AI Research |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aclanthology.org/2021.emnlp-main.688.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Towards Zero-shot Commonsense Reasoning with Self-supervised Refinement of Language Models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W3213963881, https://openalex.org/W3092456670, https://openalex.org/W2928107702, https://openalex.org/W2962833140, https://openalex.org/W4321276751, https://openalex.org/W3104120816, https://openalex.org/W4288335707, https://openalex.org/W2948036864, https://openalex.org/W3034838723, https://openalex.org/W2952570576 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18653/v1/2021.emnlp-main.688 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4363608991 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://aclanthology.org/2021.emnlp-main.688.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/2021.emnlp-main.688 |
| primary_location.id | doi:10.18653/v1/2021.emnlp-main.688 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4363608991 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://aclanthology.org/2021.emnlp-main.688.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/2021.emnlp-main.688 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3035060554, https://openalex.org/W2954165282, https://openalex.org/W3100711616, https://openalex.org/W2963457723, https://openalex.org/W3035524453, https://openalex.org/W2965373594, https://openalex.org/W3103090210, https://openalex.org/W2982944182, https://openalex.org/W3035172163, https://openalex.org/W2898785098, https://openalex.org/W2980282514, https://openalex.org/W3021393209, https://openalex.org/W4292779060, https://openalex.org/W2963026800, https://openalex.org/W2996908057, https://openalex.org/W2936695845, https://openalex.org/W1752492850, https://openalex.org/W2945290257, https://openalex.org/W2899501643, https://openalex.org/W2920114910, https://openalex.org/W2970946372, https://openalex.org/W3005742798, https://openalex.org/W2892892878, https://openalex.org/W3034985160, https://openalex.org/W3005680577, https://openalex.org/W2921802966, https://openalex.org/W2970049488, https://openalex.org/W3048018176, https://openalex.org/W3098008462, https://openalex.org/W2996403597, https://openalex.org/W1599016936, https://openalex.org/W2963526187, https://openalex.org/W4287812655, https://openalex.org/W3154295049, https://openalex.org/W2156900292, https://openalex.org/W3022402349, https://openalex.org/W4285719527 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 39, 68, 79 |
| abstract_inverted_index.In | 43 |
| abstract_inverted_index.To | 63 |
| abstract_inverted_index.an | 16 |
| abstract_inverted_index.as | 35 |
| abstract_inverted_index.by | 31 |
| abstract_inverted_index.of | 22, 38, 81, 84, 90, 98 |
| abstract_inverted_index.on | 50, 102 |
| abstract_inverted_index.to | 45, 56 |
| abstract_inverted_index.we | 1, 54, 66 |
| abstract_inverted_index.Can | 0 |
| abstract_inverted_index.and | 6 |
| abstract_inverted_index.for | 9, 26 |
| abstract_inverted_index.get | 2 |
| abstract_inverted_index.our | 91 |
| abstract_inverted_index.set | 80 |
| abstract_inverted_index.the | 20, 27, 33, 75, 96 |
| abstract_inverted_index.via | 59 |
| abstract_inverted_index.This | 13 |
| abstract_inverted_index.end, | 65 |
| abstract_inverted_index.loss | 60 |
| abstract_inverted_index.rely | 49 |
| abstract_inverted_index.seek | 55 |
| abstract_inverted_index.task | 34 |
| abstract_inverted_index.that | 48, 73 |
| abstract_inverted_index.them | 8 |
| abstract_inverted_index.this | 64 |
| abstract_inverted_index.boost | 57 |
| abstract_inverted_index.model | 77 |
| abstract_inverted_index.novel | 69 |
| abstract_inverted_index.paper | 14 |
| abstract_inverted_index.study | 18 |
| abstract_inverted_index.Schema | 29 |
| abstract_inverted_index.model. | 42 |
| abstract_inverted_index.models | 5 |
| abstract_inverted_index.refine | 7 |
| abstract_inverted_index.simple | 93 |
| abstract_inverted_index.concept | 86 |
| abstract_inverted_index.initial | 17 |
| abstract_inverted_index.propose | 67 |
| abstract_inverted_index.refines | 74 |
| abstract_inverted_index.similar | 85 |
| abstract_inverted_index.studies | 47 |
| abstract_inverted_index.Winograd | 28 |
| abstract_inverted_index.analysis | 89 |
| abstract_inverted_index.approach | 72 |
| abstract_inverted_index.contrast | 44 |
| abstract_inverted_index.existing | 3 |
| abstract_inverted_index.language | 4, 41, 76 |
| abstract_inverted_index.learning | 71 |
| abstract_inverted_index.multiple | 103 |
| abstract_inverted_index.presents | 15 |
| abstract_inverted_index.previous | 46 |
| abstract_inverted_index.Challenge | 30 |
| abstract_inverted_index.Empirical | 88 |
| abstract_inverted_index.annotated | 52 |
| abstract_inverted_index.datasets, | 53 |
| abstract_inverted_index.exploring | 19 |
| abstract_inverted_index.framework | 94 |
| abstract_inverted_index.landscape | 61 |
| abstract_inverted_index.reasoning | 25, 101 |
| abstract_inverted_index.utilizing | 78 |
| abstract_inverted_index.viability | 97 |
| abstract_inverted_index.zero-shot | 10, 23, 99 |
| abstract_inverted_index.linguistic | 82 |
| abstract_inverted_index.reasoning? | 12 |
| abstract_inverted_index.refinement | 37 |
| abstract_inverted_index.benchmarks. | 104 |
| abstract_inverted_index.commonsense | 11, 24, 100 |
| abstract_inverted_index.feasibility | 21 |
| abstract_inverted_index.fine-tuning | 51 |
| abstract_inverted_index.formulating | 32 |
| abstract_inverted_index.pre-trained | 40 |
| abstract_inverted_index.refinement. | 62 |
| abstract_inverted_index.conceptually | 92 |
| abstract_inverted_index.demonstrates | 95 |
| abstract_inverted_index.perturbations | 83 |
| abstract_inverted_index.relationships. | 87 |
| abstract_inverted_index.self-supervised | 36, 70 |
| abstract_inverted_index.conceptualization | 58 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7599999904632568 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.65456751 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |