TPA-Net: Generate A Dataset for Text to Physics-based Animation Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2211.13887
Recent breakthroughs in Vision-Language (V&L) joint research have achieved remarkable results in various text-driven tasks. High-quality Text-to-video (T2V), a task that has been long considered mission-impossible, was proven feasible with reasonably good results in latest works. However, the resulting videos often have undesired artifacts largely because the system is purely data-driven and agnostic to the physical laws. To tackle this issue and further push T2V towards high-level physical realism, we present an autonomous data generation technique and a dataset, which intend to narrow the gap with a large number of multi-modal, 3D Text-to-Video/Simulation (T2V/S) data. In the dataset, we provide high-resolution 3D physical simulations for both solids and fluids, along with textual descriptions of the physical phenomena. We take advantage of state-of-the-art physical simulation methods (i) Incremental Potential Contact (IPC) and (ii) Material Point Method (MPM) to simulate diverse scenarios, including elastic deformations, material fractures, collisions, turbulence, etc. Additionally, high-quality, multi-view rendering videos are supplied for the benefit of T2V, Neural Radiance Fields (NeRF), and other communities. This work is the first step towards fully automated Text-to-Video/Simulation (T2V/S). Live examples and subsequent work are at https://sites.google.com/view/tpa-net.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2211.13887
- https://arxiv.org/pdf/2211.13887
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4310282974
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4310282974Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2211.13887Digital Object Identifier
- Title
-
TPA-Net: Generate A Dataset for Text to Physics-based AnimationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-25Full publication date if available
- Authors
-
Yuxing Qiu, Feng Gao, Minchen Li, Govind Thattai, Yin Yang, Chenfanfu JiangList of authors in order
- Landing page
-
https://arxiv.org/abs/2211.13887Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2211.13887Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2211.13887Direct OA link when available
- Concepts
-
Computer science, Rendering (computer graphics), Animation, Radiance, Computer graphics (images), Physical law, Artificial intelligence, Optics, Epistemology, Physics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4310282974 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2211.13887 |
| ids.doi | https://doi.org/10.48550/arxiv.2211.13887 |
| ids.openalex | https://openalex.org/W4310282974 |
| fwci | |
| type | preprint |
| title | TPA-Net: Generate A Dataset for Text to Physics-based Animation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14339 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8375999927520752 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Processing and 3D Reconstruction |
| topics[1].id | https://openalex.org/T11948 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.79830002784729 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Machine Learning in Materials Science |
| topics[2].id | https://openalex.org/T10601 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.7965999841690063 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Handwritten Text Recognition Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7474674582481384 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C205711294 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6632784008979797 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q176953 |
| concepts[1].display_name | Rendering (computer graphics) |
| concepts[2].id | https://openalex.org/C502989409 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5616593360900879 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11425 |
| concepts[2].display_name | Animation |
| concepts[3].id | https://openalex.org/C23690007 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5087619423866272 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1411145 |
| concepts[3].display_name | Radiance |
| concepts[4].id | https://openalex.org/C121684516 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4357108771800995 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[4].display_name | Computer graphics (images) |
| concepts[5].id | https://openalex.org/C194583477 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4342246651649475 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q408891 |
| concepts[5].display_name | Physical law |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.34670716524124146 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C120665830 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[7].display_name | Optics |
| concepts[8].id | https://openalex.org/C111472728 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[8].display_name | Epistemology |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C138885662 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[10].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7474674582481384 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/rendering |
| keywords[1].score | 0.6632784008979797 |
| keywords[1].display_name | Rendering (computer graphics) |
| keywords[2].id | https://openalex.org/keywords/animation |
| keywords[2].score | 0.5616593360900879 |
| keywords[2].display_name | Animation |
| keywords[3].id | https://openalex.org/keywords/radiance |
| keywords[3].score | 0.5087619423866272 |
| keywords[3].display_name | Radiance |
| keywords[4].id | https://openalex.org/keywords/computer-graphics |
| keywords[4].score | 0.4357108771800995 |
| keywords[4].display_name | Computer graphics (images) |
| keywords[5].id | https://openalex.org/keywords/physical-law |
| keywords[5].score | 0.4342246651649475 |
| keywords[5].display_name | Physical law |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.34670716524124146 |
| keywords[6].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2211.13887 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2211.13887 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2211.13887 |
| locations[1].id | doi:10.48550/arxiv.2211.13887 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2211.13887 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5039797018 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2390-0282 |
| authorships[0].author.display_name | Yuxing Qiu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qiu, Yuxing |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100416254 |
| authorships[1].author.orcid | https://orcid.org/0009-0006-1843-3180 |
| authorships[1].author.display_name | Feng Gao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gao, Feng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5087311970 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9868-7311 |
| authorships[2].author.display_name | Minchen Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Minchen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5088771920 |
| authorships[3].author.orcid | https://orcid.org/0009-0005-1010-8896 |
| authorships[3].author.display_name | Govind Thattai |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Thattai, Govind |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5061103584 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9966-248X |
| authorships[4].author.display_name | Yin Yang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yang, Yin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5068163735 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3506-0583 |
| authorships[5].author.display_name | Chenfanfu Jiang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jiang, Chenfanfu |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2211.13887 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | TPA-Net: Generate A Dataset for Text to Physics-based Animation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T14339 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8375999927520752 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Processing and 3D Reconstruction |
| related_works | https://openalex.org/W2371381961, https://openalex.org/W291250033, https://openalex.org/W2035757446, https://openalex.org/W2008385118, https://openalex.org/W880955280, https://openalex.org/W2215755978, https://openalex.org/W2106647072, https://openalex.org/W4246858109, https://openalex.org/W2172753644, https://openalex.org/W54172855 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2211.13887 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2211.13887 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2211.13887 |
| primary_location.id | pmh:oai:arXiv.org:2211.13887 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2211.13887 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2211.13887 |
| publication_date | 2022-11-25 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 18, 77, 86 |
| abstract_inverted_index.3D | 91, 101 |
| abstract_inverted_index.In | 95 |
| abstract_inverted_index.To | 57 |
| abstract_inverted_index.We | 117 |
| abstract_inverted_index.an | 71 |
| abstract_inverted_index.at | 184 |
| abstract_inverted_index.in | 2, 11, 33 |
| abstract_inverted_index.is | 48, 169 |
| abstract_inverted_index.of | 89, 113, 120, 158 |
| abstract_inverted_index.to | 53, 81, 136 |
| abstract_inverted_index.we | 69, 98 |
| abstract_inverted_index.(i) | 125 |
| abstract_inverted_index.T2V | 64 |
| abstract_inverted_index.and | 51, 61, 76, 107, 130, 164, 180 |
| abstract_inverted_index.are | 153, 183 |
| abstract_inverted_index.for | 104, 155 |
| abstract_inverted_index.gap | 84 |
| abstract_inverted_index.has | 21 |
| abstract_inverted_index.the | 37, 46, 54, 83, 96, 114, 156, 170 |
| abstract_inverted_index.was | 26 |
| abstract_inverted_index.(ii) | 131 |
| abstract_inverted_index.Live | 178 |
| abstract_inverted_index.T2V, | 159 |
| abstract_inverted_index.This | 167 |
| abstract_inverted_index.been | 22 |
| abstract_inverted_index.both | 105 |
| abstract_inverted_index.data | 73 |
| abstract_inverted_index.etc. | 147 |
| abstract_inverted_index.good | 31 |
| abstract_inverted_index.have | 7, 41 |
| abstract_inverted_index.long | 23 |
| abstract_inverted_index.push | 63 |
| abstract_inverted_index.step | 172 |
| abstract_inverted_index.take | 118 |
| abstract_inverted_index.task | 19 |
| abstract_inverted_index.that | 20 |
| abstract_inverted_index.this | 59 |
| abstract_inverted_index.with | 29, 85, 110 |
| abstract_inverted_index.work | 168, 182 |
| abstract_inverted_index.(IPC) | 129 |
| abstract_inverted_index.(MPM) | 135 |
| abstract_inverted_index.Point | 133 |
| abstract_inverted_index.along | 109 |
| abstract_inverted_index.data. | 94 |
| abstract_inverted_index.first | 171 |
| abstract_inverted_index.fully | 174 |
| abstract_inverted_index.issue | 60 |
| abstract_inverted_index.joint | 5 |
| abstract_inverted_index.large | 87 |
| abstract_inverted_index.laws. | 56 |
| abstract_inverted_index.often | 40 |
| abstract_inverted_index.other | 165 |
| abstract_inverted_index.which | 79 |
| abstract_inverted_index.(T2V), | 17 |
| abstract_inverted_index.Fields | 162 |
| abstract_inverted_index.Method | 134 |
| abstract_inverted_index.Neural | 160 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.intend | 80 |
| abstract_inverted_index.latest | 34 |
| abstract_inverted_index.narrow | 82 |
| abstract_inverted_index.number | 88 |
| abstract_inverted_index.proven | 27 |
| abstract_inverted_index.purely | 49 |
| abstract_inverted_index.solids | 106 |
| abstract_inverted_index.system | 47 |
| abstract_inverted_index.tackle | 58 |
| abstract_inverted_index.tasks. | 14 |
| abstract_inverted_index.videos | 39, 152 |
| abstract_inverted_index.works. | 35 |
| abstract_inverted_index.(NeRF), | 163 |
| abstract_inverted_index.(T2V/S) | 93 |
| abstract_inverted_index.Contact | 128 |
| abstract_inverted_index.because | 45 |
| abstract_inverted_index.benefit | 157 |
| abstract_inverted_index.diverse | 138 |
| abstract_inverted_index.elastic | 141 |
| abstract_inverted_index.fluids, | 108 |
| abstract_inverted_index.further | 62 |
| abstract_inverted_index.largely | 44 |
| abstract_inverted_index.methods | 124 |
| abstract_inverted_index.present | 70 |
| abstract_inverted_index.provide | 99 |
| abstract_inverted_index.results | 10, 32 |
| abstract_inverted_index.textual | 111 |
| abstract_inverted_index.towards | 65, 173 |
| abstract_inverted_index.various | 12 |
| abstract_inverted_index.(T2V/S). | 177 |
| abstract_inverted_index.However, | 36 |
| abstract_inverted_index.Material | 132 |
| abstract_inverted_index.Radiance | 161 |
| abstract_inverted_index.achieved | 8 |
| abstract_inverted_index.agnostic | 52 |
| abstract_inverted_index.dataset, | 78, 97 |
| abstract_inverted_index.examples | 179 |
| abstract_inverted_index.feasible | 28 |
| abstract_inverted_index.material | 143 |
| abstract_inverted_index.physical | 55, 67, 102, 115, 122 |
| abstract_inverted_index.realism, | 68 |
| abstract_inverted_index.research | 6 |
| abstract_inverted_index.simulate | 137 |
| abstract_inverted_index.supplied | 154 |
| abstract_inverted_index.(V&L) | 4 |
| abstract_inverted_index.Potential | 127 |
| abstract_inverted_index.advantage | 119 |
| abstract_inverted_index.artifacts | 43 |
| abstract_inverted_index.automated | 175 |
| abstract_inverted_index.including | 140 |
| abstract_inverted_index.rendering | 151 |
| abstract_inverted_index.resulting | 38 |
| abstract_inverted_index.technique | 75 |
| abstract_inverted_index.undesired | 42 |
| abstract_inverted_index.autonomous | 72 |
| abstract_inverted_index.considered | 24 |
| abstract_inverted_index.fractures, | 144 |
| abstract_inverted_index.generation | 74 |
| abstract_inverted_index.high-level | 66 |
| abstract_inverted_index.multi-view | 150 |
| abstract_inverted_index.phenomena. | 116 |
| abstract_inverted_index.reasonably | 30 |
| abstract_inverted_index.remarkable | 9 |
| abstract_inverted_index.scenarios, | 139 |
| abstract_inverted_index.simulation | 123 |
| abstract_inverted_index.subsequent | 181 |
| abstract_inverted_index.Incremental | 126 |
| abstract_inverted_index.collisions, | 145 |
| abstract_inverted_index.data-driven | 50 |
| abstract_inverted_index.simulations | 103 |
| abstract_inverted_index.text-driven | 13 |
| abstract_inverted_index.turbulence, | 146 |
| abstract_inverted_index.High-quality | 15 |
| abstract_inverted_index.communities. | 166 |
| abstract_inverted_index.descriptions | 112 |
| abstract_inverted_index.multi-modal, | 90 |
| abstract_inverted_index.Additionally, | 148 |
| abstract_inverted_index.Text-to-video | 16 |
| abstract_inverted_index.breakthroughs | 1 |
| abstract_inverted_index.deformations, | 142 |
| abstract_inverted_index.high-quality, | 149 |
| abstract_inverted_index.Vision-Language | 3 |
| abstract_inverted_index.high-resolution | 100 |
| abstract_inverted_index.state-of-the-art | 121 |
| abstract_inverted_index.mission-impossible, | 25 |
| abstract_inverted_index.Text-to-Video/Simulation | 92, 176 |
| abstract_inverted_index.https://sites.google.com/view/tpa-net. | 185 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |