TRACE: A Time-Relational Approximate Cubing Engine for Fast Data Insights Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.06336
A large class of data questions can be modeled as identifying important slices of data driven by user defined metrics. This paper presents TRACE, a Time-Relational Approximate Cubing Engine that enables interactive analysis on such slices with a low upfront cost - both in space and computation. It does this by materializing the most important parts of the cube over time enabling interactive querying for a large class of analytical queries e.g. what part of my business has the highest revenue growth ([SubCategory=Sports Equipment, Gender=Female]), what slices are lagging in revenue per user ([State=CA, Age=20-30]). Many user defined metrics are supported including common aggregations such as SUM, COUNT, DISTINCT COUNT and more complex ones such as AVERAGE. We implemented and deployed TRACE for a variety of business use cases.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.06336
- https://arxiv.org/pdf/2401.06336
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390897472
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390897472Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.06336Digital Object Identifier
- Title
-
TRACE: A Time-Relational Approximate Cubing Engine for Fast Data InsightsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-12Full publication date if available
- Authors
-
Suharsh Sivakumar, Jonathan Shen, Rajat MongaList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.06336Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.06336Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.06336Direct OA link when available
- Concepts
-
TRACE (psycholinguistics), Computer science, Revenue, Lagging, Class (philosophy), Variety (cybernetics), Computation, Data mining, Algorithm, Statistics, Mathematics, Artificial intelligence, Accounting, Business, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390897472 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.06336 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.06336 |
| ids.openalex | https://openalex.org/W4390897472 |
| fwci | |
| type | preprint |
| title | TRACE: A Time-Relational Approximate Cubing Engine for Fast Data Insights |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11106 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Data Management and Algorithms |
| topics[1].id | https://openalex.org/T10317 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Advanced Database Systems and Queries |
| topics[2].id | https://openalex.org/T10538 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9940000176429749 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Data Mining Algorithms and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C75291252 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8238146305084229 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1315756 |
| concepts[0].display_name | TRACE (psycholinguistics) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7073249816894531 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C195487862 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6625096797943115 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q850210 |
| concepts[2].display_name | Revenue |
| concepts[3].id | https://openalex.org/C2776962539 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6605738401412964 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6472078 |
| concepts[3].display_name | Lagging |
| concepts[4].id | https://openalex.org/C2777212361 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6026201248168945 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[4].display_name | Class (philosophy) |
| concepts[5].id | https://openalex.org/C136197465 |
| concepts[5].level | 2 |
| concepts[5].score | 0.565850555896759 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[5].display_name | Variety (cybernetics) |
| concepts[6].id | https://openalex.org/C45374587 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5031864047050476 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[6].display_name | Computation |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3722747564315796 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.15822529792785645 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1578252911567688 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.12404307723045349 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.10423186421394348 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C121955636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q4116214 |
| concepts[12].display_name | Accounting |
| concepts[13].id | https://openalex.org/C144133560 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[13].display_name | Business |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/trace |
| keywords[0].score | 0.8238146305084229 |
| keywords[0].display_name | TRACE (psycholinguistics) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7073249816894531 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/revenue |
| keywords[2].score | 0.6625096797943115 |
| keywords[2].display_name | Revenue |
| keywords[3].id | https://openalex.org/keywords/lagging |
| keywords[3].score | 0.6605738401412964 |
| keywords[3].display_name | Lagging |
| keywords[4].id | https://openalex.org/keywords/class |
| keywords[4].score | 0.6026201248168945 |
| keywords[4].display_name | Class (philosophy) |
| keywords[5].id | https://openalex.org/keywords/variety |
| keywords[5].score | 0.565850555896759 |
| keywords[5].display_name | Variety (cybernetics) |
| keywords[6].id | https://openalex.org/keywords/computation |
| keywords[6].score | 0.5031864047050476 |
| keywords[6].display_name | Computation |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.3722747564315796 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.15822529792785645 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.1578252911567688 |
| keywords[9].display_name | Statistics |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.12404307723045349 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.10423186421394348 |
| keywords[11].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.06336 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.06336 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.06336 |
| locations[1].id | doi:10.48550/arxiv.2401.06336 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.06336 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5024855691 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Suharsh Sivakumar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sivakumar, Suharsh |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5021278619 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jonathan Shen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shen, Jonathan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5024140027 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Rajat Monga |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Monga, Rajat |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.06336 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-01-16T00:00:00 |
| display_name | TRACE: A Time-Relational Approximate Cubing Engine for Fast Data Insights |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11106 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Data Management and Algorithms |
| related_works | https://openalex.org/W2135562825, https://openalex.org/W3145783610, https://openalex.org/W2354181859, https://openalex.org/W2757096358, https://openalex.org/W2472614530, https://openalex.org/W2375646802, https://openalex.org/W2052668055, https://openalex.org/W2162038069, https://openalex.org/W627568556, https://openalex.org/W2358087883 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.06336 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.06336 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.06336 |
| primary_location.id | pmh:oai:arXiv.org:2401.06336 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.06336 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.06336 |
| publication_date | 2024-01-12 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 41 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 24, 37, 65, 123 |
| abstract_inverted_index.It | 47 |
| abstract_inverted_index.We | 117 |
| abstract_inverted_index.as | 9, 105, 115 |
| abstract_inverted_index.be | 7 |
| abstract_inverted_index.by | 16, 50 |
| abstract_inverted_index.in | 43, 89 |
| abstract_inverted_index.my | 75 |
| abstract_inverted_index.of | 3, 13, 56, 68, 74, 125 |
| abstract_inverted_index.on | 33 |
| abstract_inverted_index.and | 45, 110, 119 |
| abstract_inverted_index.are | 87, 99 |
| abstract_inverted_index.can | 6 |
| abstract_inverted_index.for | 64, 122 |
| abstract_inverted_index.has | 77 |
| abstract_inverted_index.low | 38 |
| abstract_inverted_index.per | 91 |
| abstract_inverted_index.the | 52, 57, 78 |
| abstract_inverted_index.use | 127 |
| abstract_inverted_index.Many | 95 |
| abstract_inverted_index.SUM, | 106 |
| abstract_inverted_index.This | 20 |
| abstract_inverted_index.both | 42 |
| abstract_inverted_index.cost | 40 |
| abstract_inverted_index.cube | 58 |
| abstract_inverted_index.data | 4, 14 |
| abstract_inverted_index.does | 48 |
| abstract_inverted_index.e.g. | 71 |
| abstract_inverted_index.more | 111 |
| abstract_inverted_index.most | 53 |
| abstract_inverted_index.ones | 113 |
| abstract_inverted_index.over | 59 |
| abstract_inverted_index.part | 73 |
| abstract_inverted_index.such | 34, 104, 114 |
| abstract_inverted_index.that | 29 |
| abstract_inverted_index.this | 49 |
| abstract_inverted_index.time | 60 |
| abstract_inverted_index.user | 17, 92, 96 |
| abstract_inverted_index.what | 72, 85 |
| abstract_inverted_index.with | 36 |
| abstract_inverted_index.COUNT | 109 |
| abstract_inverted_index.TRACE | 121 |
| abstract_inverted_index.class | 2, 67 |
| abstract_inverted_index.large | 1, 66 |
| abstract_inverted_index.paper | 21 |
| abstract_inverted_index.parts | 55 |
| abstract_inverted_index.space | 44 |
| abstract_inverted_index.COUNT, | 107 |
| abstract_inverted_index.Cubing | 27 |
| abstract_inverted_index.Engine | 28 |
| abstract_inverted_index.TRACE, | 23 |
| abstract_inverted_index.cases. | 128 |
| abstract_inverted_index.common | 102 |
| abstract_inverted_index.driven | 15 |
| abstract_inverted_index.growth | 81 |
| abstract_inverted_index.slices | 12, 35, 86 |
| abstract_inverted_index.complex | 112 |
| abstract_inverted_index.defined | 18, 97 |
| abstract_inverted_index.enables | 30 |
| abstract_inverted_index.highest | 79 |
| abstract_inverted_index.lagging | 88 |
| abstract_inverted_index.metrics | 98 |
| abstract_inverted_index.modeled | 8 |
| abstract_inverted_index.queries | 70 |
| abstract_inverted_index.revenue | 80, 90 |
| abstract_inverted_index.upfront | 39 |
| abstract_inverted_index.variety | 124 |
| abstract_inverted_index.AVERAGE. | 116 |
| abstract_inverted_index.DISTINCT | 108 |
| abstract_inverted_index.analysis | 32 |
| abstract_inverted_index.business | 76, 126 |
| abstract_inverted_index.deployed | 120 |
| abstract_inverted_index.enabling | 61 |
| abstract_inverted_index.metrics. | 19 |
| abstract_inverted_index.presents | 22 |
| abstract_inverted_index.querying | 63 |
| abstract_inverted_index.important | 11, 54 |
| abstract_inverted_index.including | 101 |
| abstract_inverted_index.questions | 5 |
| abstract_inverted_index.supported | 100 |
| abstract_inverted_index.Equipment, | 83 |
| abstract_inverted_index.analytical | 69 |
| abstract_inverted_index.([State=CA, | 93 |
| abstract_inverted_index.Approximate | 26 |
| abstract_inverted_index.identifying | 10 |
| abstract_inverted_index.implemented | 118 |
| abstract_inverted_index.interactive | 31, 62 |
| abstract_inverted_index.Age=20-30]). | 94 |
| abstract_inverted_index.aggregations | 103 |
| abstract_inverted_index.computation. | 46 |
| abstract_inverted_index.materializing | 51 |
| abstract_inverted_index.Time-Relational | 25 |
| abstract_inverted_index.Gender=Female]), | 84 |
| abstract_inverted_index.([SubCategory=Sports | 82 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/5 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Gender equality |
| citation_normalized_percentile |