TraceDet: Hallucination Detection from the Decoding Trace of Diffusion Large Language Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.01274
Diffusion large language models (D-LLMs) have recently emerged as a promising alternative to auto-regressive LLMs (AR-LLMs). However, the hallucination problem in D-LLMs remains underexplored, limiting their reliability in real-world applications. Existing hallucination detection methods are designed for AR-LLMs and rely on signals from single-step generation, making them ill-suited for D-LLMs where hallucination signals often emerge throughout the multi-step denoising process. To bridge this gap, we propose TraceDet, a novel framework that explicitly leverages the intermediate denoising steps of D-LLMs for hallucination detection. TraceDet models the denoising process as an action trace, with each action defined as the model's prediction over the cleaned response, conditioned on the previous intermediate output. By identifying the sub-trace that is maximally informative to the hallucinated responses, TraceDet leverages the key hallucination signals in the multi-step denoising process of D-LLMs for hallucination detection. Extensive experiments on various open source D-LLMs demonstrate that TraceDet consistently improves hallucination detection, achieving an average gain in AUROC of 15.2% compared to baselines.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2510.01274
- https://arxiv.org/pdf/2510.01274
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414814664
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414814664Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.01274Digital Object Identifier
- Title
-
TraceDet: Hallucination Detection from the Decoding Trace of Diffusion Large Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-30Full publication date if available
- Authors
-
S. Chang, Junchi Yu, Weixing Wang, Yongqiang Chen, Jialin Yu, Philip H. S. Torr, Jindong GuList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.01274Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.01274Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.01274Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414814664 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.01274 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.01274 |
| ids.openalex | https://openalex.org/W4414814664 |
| fwci | |
| type | preprint |
| title | TraceDet: Hallucination Detection from the Decoding Trace of Diffusion Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9099000096321106 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2510.01274 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.01274 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.01274 |
| locations[1].id | doi:10.48550/arxiv.2510.01274 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.01274 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5113721466 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | S. Chang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chang, Shenxu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5060684352 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4118-3248 |
| authorships[1].author.display_name | Junchi Yu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yu, Junchi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100739970 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9512-3307 |
| authorships[2].author.display_name | Weixing Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Weixing |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100611593 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2309-5674 |
| authorships[3].author.display_name | Yongqiang Chen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chen, Yongqiang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5078597351 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7561-5008 |
| authorships[4].author.display_name | Jialin Yu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yu, Jialin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5042899882 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Philip H. S. Torr |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Torr, Philip |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5055994909 |
| authorships[6].author.orcid | https://orcid.org/0009-0000-0574-0129 |
| authorships[6].author.display_name | Jindong Gu |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Gu, Jindong |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.01274 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | TraceDet: Hallucination Detection from the Decoding Trace of Diffusion Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9099000096321106 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.01274 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.01274 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.01274 |
| primary_location.id | pmh:oai:arXiv.org:2510.01274 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.01274 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.01274 |
| publication_date | 2025-09-30 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9, 67 |
| abstract_inverted_index.By | 109 |
| abstract_inverted_index.To | 60 |
| abstract_inverted_index.an | 88, 152 |
| abstract_inverted_index.as | 8, 87, 95 |
| abstract_inverted_index.in | 20, 27, 127, 155 |
| abstract_inverted_index.is | 114 |
| abstract_inverted_index.of | 77, 132, 157 |
| abstract_inverted_index.on | 40, 104, 139 |
| abstract_inverted_index.to | 12, 117, 160 |
| abstract_inverted_index.we | 64 |
| abstract_inverted_index.and | 38 |
| abstract_inverted_index.are | 34 |
| abstract_inverted_index.for | 36, 48, 79, 134 |
| abstract_inverted_index.key | 124 |
| abstract_inverted_index.the | 17, 56, 73, 84, 96, 100, 105, 111, 118, 123, 128 |
| abstract_inverted_index.LLMs | 14 |
| abstract_inverted_index.each | 92 |
| abstract_inverted_index.from | 42 |
| abstract_inverted_index.gain | 154 |
| abstract_inverted_index.gap, | 63 |
| abstract_inverted_index.have | 5 |
| abstract_inverted_index.open | 141 |
| abstract_inverted_index.over | 99 |
| abstract_inverted_index.rely | 39 |
| abstract_inverted_index.that | 70, 113, 145 |
| abstract_inverted_index.them | 46 |
| abstract_inverted_index.this | 62 |
| abstract_inverted_index.with | 91 |
| abstract_inverted_index.15.2% | 158 |
| abstract_inverted_index.AUROC | 156 |
| abstract_inverted_index.large | 1 |
| abstract_inverted_index.novel | 68 |
| abstract_inverted_index.often | 53 |
| abstract_inverted_index.steps | 76 |
| abstract_inverted_index.their | 25 |
| abstract_inverted_index.where | 50 |
| abstract_inverted_index.D-LLMs | 21, 49, 78, 133, 143 |
| abstract_inverted_index.action | 89, 93 |
| abstract_inverted_index.bridge | 61 |
| abstract_inverted_index.emerge | 54 |
| abstract_inverted_index.making | 45 |
| abstract_inverted_index.models | 3, 83 |
| abstract_inverted_index.source | 142 |
| abstract_inverted_index.trace, | 90 |
| abstract_inverted_index.AR-LLMs | 37 |
| abstract_inverted_index.average | 153 |
| abstract_inverted_index.cleaned | 101 |
| abstract_inverted_index.defined | 94 |
| abstract_inverted_index.emerged | 7 |
| abstract_inverted_index.methods | 33 |
| abstract_inverted_index.model's | 97 |
| abstract_inverted_index.output. | 108 |
| abstract_inverted_index.problem | 19 |
| abstract_inverted_index.process | 86, 131 |
| abstract_inverted_index.propose | 65 |
| abstract_inverted_index.remains | 22 |
| abstract_inverted_index.signals | 41, 52, 126 |
| abstract_inverted_index.various | 140 |
| abstract_inverted_index.(D-LLMs) | 4 |
| abstract_inverted_index.Existing | 30 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.TraceDet | 82, 121, 146 |
| abstract_inverted_index.compared | 159 |
| abstract_inverted_index.designed | 35 |
| abstract_inverted_index.improves | 148 |
| abstract_inverted_index.language | 2 |
| abstract_inverted_index.limiting | 24 |
| abstract_inverted_index.previous | 106 |
| abstract_inverted_index.process. | 59 |
| abstract_inverted_index.recently | 6 |
| abstract_inverted_index.Diffusion | 0 |
| abstract_inverted_index.Extensive | 137 |
| abstract_inverted_index.TraceDet, | 66 |
| abstract_inverted_index.achieving | 151 |
| abstract_inverted_index.denoising | 58, 75, 85, 130 |
| abstract_inverted_index.detection | 32 |
| abstract_inverted_index.framework | 69 |
| abstract_inverted_index.leverages | 72, 122 |
| abstract_inverted_index.maximally | 115 |
| abstract_inverted_index.promising | 10 |
| abstract_inverted_index.response, | 102 |
| abstract_inverted_index.sub-trace | 112 |
| abstract_inverted_index.(AR-LLMs). | 15 |
| abstract_inverted_index.baselines. | 161 |
| abstract_inverted_index.detection, | 150 |
| abstract_inverted_index.detection. | 81, 136 |
| abstract_inverted_index.explicitly | 71 |
| abstract_inverted_index.ill-suited | 47 |
| abstract_inverted_index.multi-step | 57, 129 |
| abstract_inverted_index.prediction | 98 |
| abstract_inverted_index.real-world | 28 |
| abstract_inverted_index.responses, | 120 |
| abstract_inverted_index.throughout | 55 |
| abstract_inverted_index.alternative | 11 |
| abstract_inverted_index.conditioned | 103 |
| abstract_inverted_index.demonstrate | 144 |
| abstract_inverted_index.experiments | 138 |
| abstract_inverted_index.generation, | 44 |
| abstract_inverted_index.identifying | 110 |
| abstract_inverted_index.informative | 116 |
| abstract_inverted_index.reliability | 26 |
| abstract_inverted_index.single-step | 43 |
| abstract_inverted_index.consistently | 147 |
| abstract_inverted_index.hallucinated | 119 |
| abstract_inverted_index.intermediate | 74, 107 |
| abstract_inverted_index.applications. | 29 |
| abstract_inverted_index.hallucination | 18, 31, 51, 80, 125, 135, 149 |
| abstract_inverted_index.underexplored, | 23 |
| abstract_inverted_index.auto-regressive | 13 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |