Tracing Training Footprints: A Calibration Approach for Membership Inference Attacks Against Multimodal Large Language Models Article Swipe
Xiaofan Zheng
,
Huixuan Zhang
,
Xiaojun Wan
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2025.findings-emnlp.931
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2025.findings-emnlp.931
Related Topics
Concepts
No concepts available.
Metadata
- Type
- article
- Landing Page
- https://doi.org/10.18653/v1/2025.findings-emnlp.931
- https://aclanthology.org/2025.findings-emnlp.931.pdf
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4416034162
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416034162Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/2025.findings-emnlp.931Digital Object Identifier
- Title
-
Tracing Training Footprints: A Calibration Approach for Membership Inference Attacks Against Multimodal Large Language ModelsWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Xiaofan Zheng, Huixuan Zhang, Xiaojun WanList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/2025.findings-emnlp.931Publisher landing page
- PDF URL
-
https://aclanthology.org/2025.findings-emnlp.931.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://aclanthology.org/2025.findings-emnlp.931.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416034162 |
|---|---|
| doi | https://doi.org/10.18653/v1/2025.findings-emnlp.931 |
| ids.doi | https://doi.org/10.18653/v1/2025.findings-emnlp.931 |
| ids.openalex | https://openalex.org/W4416034162 |
| fwci | |
| type | article |
| title | Tracing Training Footprints: A Calibration Approach for Membership Inference Attacks Against Multimodal Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 17191 |
| biblio.first_page | 17179 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.18653/v1/2025.findings-emnlp.931 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://aclanthology.org/2025.findings-emnlp.931.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Findings of the Association for Computational Linguistics: EMNLP 2025 |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/2025.findings-emnlp.931 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100523392 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-4292-4564 |
| authorships[0].author.display_name | Xiaofan Zheng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaofan Zheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5029626519 |
| authorships[1].author.orcid | https://orcid.org/0009-0009-2354-723X |
| authorships[1].author.display_name | Huixuan Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huixuan Zhang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5029568096 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6887-1994 |
| authorships[2].author.display_name | Xiaojun Wan |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Xiaojun Wan |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aclanthology.org/2025.findings-emnlp.931.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-08T00:00:00 |
| display_name | Tracing Training Footprints: A Calibration Approach for Membership Inference Attacks Against Multimodal Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-09T23:09:16.995542 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18653/v1/2025.findings-emnlp.931 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://aclanthology.org/2025.findings-emnlp.931.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Findings of the Association for Computational Linguistics: EMNLP 2025 |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/2025.findings-emnlp.931 |
| primary_location.id | doi:10.18653/v1/2025.findings-emnlp.931 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://aclanthology.org/2025.findings-emnlp.931.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Findings of the Association for Computational Linguistics: EMNLP 2025 |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/2025.findings-emnlp.931 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |