Traffic Sign Recognition Based on Bayesian Angular Margin Loss for an Autonomous Vehicle Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/electronics12143073
Traffic sign recognition is a pivotal technology in the advancement of autonomous vehicles as it is critical for adhering to country- or region-specific traffic regulations. Defined as an image classification problem in computer vision, traffic sign recognition is a technique that determines the class of a given traffic sign from input data processed by a neural network. Although image classification has been considered a relatively manageable task with the advent of neural networks, traffic sign classification presents its own unique set of challenges due to the similar visual features inherent in traffic signs. This can make designing a softmax-based classifier problematic. To address this challenge, this paper presents a novel traffic sign recognition model that employs angular margin loss. This model optimizes the necessary hyperparameters for the angular margin loss via Bayesian optimization, thereby maximizing the effectiveness of the loss and achieving a high level of classification performance. This paper showcases the impressive performance of the proposed method through experimental results on benchmark datasets for traffic sign classification.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics12143073
- https://www.mdpi.com/2079-9292/12/14/3073/pdf?version=1689327182
- OA Status
- gold
- Cited By
- 4
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4384297864
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4384297864Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics12143073Digital Object Identifier
- Title
-
Traffic Sign Recognition Based on Bayesian Angular Margin Loss for an Autonomous VehicleWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-14Full publication date if available
- Authors
-
Taehyeon Kim, Se-Ho Park, Kyoungtaek LeeList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics12143073Publisher landing page
- PDF URL
-
https://www.mdpi.com/2079-9292/12/14/3073/pdf?version=1689327182Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2079-9292/12/14/3073/pdf?version=1689327182Direct OA link when available
- Concepts
-
Traffic sign, Traffic sign recognition, Softmax function, Computer science, Artificial intelligence, Classifier (UML), Margin (machine learning), Benchmark (surveying), Hyperparameter, Bayesian probability, Artificial neural network, Machine learning, Feature extraction, Pattern recognition (psychology), Sign (mathematics), Data mining, Geodesy, Geography, Mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4384297864 |
|---|---|
| doi | https://doi.org/10.3390/electronics12143073 |
| ids.doi | https://doi.org/10.3390/electronics12143073 |
| ids.openalex | https://openalex.org/W4384297864 |
| fwci | 0.72787336 |
| type | article |
| title | Traffic Sign Recognition Based on Bayesian Angular Margin Loss for an Autonomous Vehicle |
| biblio.issue | 14 |
| biblio.volume | 12 |
| biblio.last_page | 3073 |
| biblio.first_page | 3073 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T12707 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Vehicle License Plate Recognition |
| topics[2].id | https://openalex.org/T10601 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9972000122070312 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Handwritten Text Recognition Techniques |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C2983860417 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8572598695755005 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q170285 |
| concepts[0].display_name | Traffic sign |
| concepts[1].id | https://openalex.org/C6528762 |
| concepts[1].level | 4 |
| concepts[1].score | 0.8001799583435059 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1574298 |
| concepts[1].display_name | Traffic sign recognition |
| concepts[2].id | https://openalex.org/C188441871 |
| concepts[2].level | 3 |
| concepts[2].score | 0.722652018070221 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7554146 |
| concepts[2].display_name | Softmax function |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.7012433409690857 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5597140789031982 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C95623464 |
| concepts[5].level | 2 |
| concepts[5].score | 0.549340546131134 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[5].display_name | Classifier (UML) |
| concepts[6].id | https://openalex.org/C774472 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5458533763885498 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6760393 |
| concepts[6].display_name | Margin (machine learning) |
| concepts[7].id | https://openalex.org/C185798385 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5286895632743835 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[7].display_name | Benchmark (surveying) |
| concepts[8].id | https://openalex.org/C8642999 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48566973209381104 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4171168 |
| concepts[8].display_name | Hyperparameter |
| concepts[9].id | https://openalex.org/C107673813 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4408246874809265 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[9].display_name | Bayesian probability |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.432190477848053 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.426790714263916 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C52622490 |
| concepts[12].level | 2 |
| concepts[12].score | 0.42508938908576965 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[12].display_name | Feature extraction |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4244217872619629 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C139676723 |
| concepts[14].level | 2 |
| concepts[14].score | 0.4074777662754059 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1193832 |
| concepts[14].display_name | Sign (mathematics) |
| concepts[15].id | https://openalex.org/C124101348 |
| concepts[15].level | 1 |
| concepts[15].score | 0.3263087868690491 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[15].display_name | Data mining |
| concepts[16].id | https://openalex.org/C13280743 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[16].display_name | Geodesy |
| concepts[17].id | https://openalex.org/C205649164 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[17].display_name | Geography |
| concepts[18].id | https://openalex.org/C33923547 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[18].display_name | Mathematics |
| concepts[19].id | https://openalex.org/C134306372 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[19].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/traffic-sign |
| keywords[0].score | 0.8572598695755005 |
| keywords[0].display_name | Traffic sign |
| keywords[1].id | https://openalex.org/keywords/traffic-sign-recognition |
| keywords[1].score | 0.8001799583435059 |
| keywords[1].display_name | Traffic sign recognition |
| keywords[2].id | https://openalex.org/keywords/softmax-function |
| keywords[2].score | 0.722652018070221 |
| keywords[2].display_name | Softmax function |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.7012433409690857 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5597140789031982 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/classifier |
| keywords[5].score | 0.549340546131134 |
| keywords[5].display_name | Classifier (UML) |
| keywords[6].id | https://openalex.org/keywords/margin |
| keywords[6].score | 0.5458533763885498 |
| keywords[6].display_name | Margin (machine learning) |
| keywords[7].id | https://openalex.org/keywords/benchmark |
| keywords[7].score | 0.5286895632743835 |
| keywords[7].display_name | Benchmark (surveying) |
| keywords[8].id | https://openalex.org/keywords/hyperparameter |
| keywords[8].score | 0.48566973209381104 |
| keywords[8].display_name | Hyperparameter |
| keywords[9].id | https://openalex.org/keywords/bayesian-probability |
| keywords[9].score | 0.4408246874809265 |
| keywords[9].display_name | Bayesian probability |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.432190477848053 |
| keywords[10].display_name | Artificial neural network |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.426790714263916 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/feature-extraction |
| keywords[12].score | 0.42508938908576965 |
| keywords[12].display_name | Feature extraction |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.4244217872619629 |
| keywords[13].display_name | Pattern recognition (psychology) |
| keywords[14].id | https://openalex.org/keywords/sign |
| keywords[14].score | 0.4074777662754059 |
| keywords[14].display_name | Sign (mathematics) |
| keywords[15].id | https://openalex.org/keywords/data-mining |
| keywords[15].score | 0.3263087868690491 |
| keywords[15].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.3390/electronics12143073 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2079-9292/12/14/3073/pdf?version=1689327182 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics12143073 |
| locations[1].id | pmh:oai:mdpi.com:/2079-9292/12/14/3073/ |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400947 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | MDPI (MDPI AG) |
| locations[1].source.host_organization | https://openalex.org/I4210097602 |
| locations[1].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[1].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Electronics; Volume 12; Issue 14; Pages: 3073 |
| locations[1].landing_page_url | https://dx.doi.org/10.3390/electronics12143073 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100774197 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5496-2625 |
| authorships[0].author.display_name | Taehyeon Kim |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210131650 |
| authorships[0].affiliations[0].raw_affiliation_string | Contents Convergence Research Center, Korea Electronics Technology Institute, Seoul 03924, Republic of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I4210131650 |
| authorships[0].institutions[0].ror | https://ror.org/039k6f508 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I2801339556, https://openalex.org/I4210089395, https://openalex.org/I4210131650 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Korea Electronics Technology Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Taehyeon Kim |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Contents Convergence Research Center, Korea Electronics Technology Institute, Seoul 03924, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A5103275695 |
| authorships[1].author.orcid | https://orcid.org/0009-0007-6686-0782 |
| authorships[1].author.display_name | Se-Ho Park |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210131650 |
| authorships[1].affiliations[0].raw_affiliation_string | Contents Convergence Research Center, Korea Electronics Technology Institute, Seoul 03924, Republic of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I4210131650 |
| authorships[1].institutions[0].ror | https://ror.org/039k6f508 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I2801339556, https://openalex.org/I4210089395, https://openalex.org/I4210131650 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Korea Electronics Technology Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Seho Park |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Contents Convergence Research Center, Korea Electronics Technology Institute, Seoul 03924, Republic of Korea |
| authorships[2].author.id | https://openalex.org/A5029579922 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kyoungtaek Lee |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210131650 |
| authorships[2].affiliations[0].raw_affiliation_string | Contents Convergence Research Center, Korea Electronics Technology Institute, Seoul 03924, Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I4210131650 |
| authorships[2].institutions[0].ror | https://ror.org/039k6f508 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I2801339556, https://openalex.org/I4210089395, https://openalex.org/I4210131650 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Korea Electronics Technology Institute |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Kyoungtaek Lee |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Contents Convergence Research Center, Korea Electronics Technology Institute, Seoul 03924, Republic of Korea |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2079-9292/12/14/3073/pdf?version=1689327182 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-07-15T00:00:00 |
| display_name | Traffic Sign Recognition Based on Bayesian Angular Margin Loss for an Autonomous Vehicle |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2982889384, https://openalex.org/W4226227567, https://openalex.org/W2971218105, https://openalex.org/W3010284783, https://openalex.org/W4287113729, https://openalex.org/W3173314472, https://openalex.org/W3103152812, https://openalex.org/W4382897155, https://openalex.org/W4379231512, https://openalex.org/W4283820116 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/electronics12143073 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2079-9292/12/14/3073/pdf?version=1689327182 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics12143073 |
| primary_location.id | doi:10.3390/electronics12143073 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2079-9292/12/14/3073/pdf?version=1689327182 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics12143073 |
| publication_date | 2023-07-14 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2914006399, https://openalex.org/W2064944885, https://openalex.org/W3143407182, https://openalex.org/W2014939786, https://openalex.org/W3109763490, https://openalex.org/W3121993166, https://openalex.org/W2963697717, https://openalex.org/W3040318838, https://openalex.org/W3160460179, https://openalex.org/W3035078578, https://openalex.org/W4294891500, https://openalex.org/W2042082479, https://openalex.org/W1964230011, https://openalex.org/W2136094925, https://openalex.org/W2005205861, https://openalex.org/W2077753765, https://openalex.org/W2048334409, https://openalex.org/W1672082250, https://openalex.org/W2726204845, https://openalex.org/W2792806930, https://openalex.org/W2532247935, https://openalex.org/W2006956748, https://openalex.org/W4313894460, https://openalex.org/W4224215610, https://openalex.org/W4386076325, https://openalex.org/W2963037989, https://openalex.org/W2969985801, https://openalex.org/W3183348949, https://openalex.org/W3158395175, https://openalex.org/W3018349615, https://openalex.org/W4238746485, https://openalex.org/W3001774049, https://openalex.org/W1798702550, https://openalex.org/W4213300415, https://openalex.org/W2784163702, https://openalex.org/W2117876524, https://openalex.org/W2479866714, https://openalex.org/W6786190416, https://openalex.org/W2970971581, https://openalex.org/W4307705289, https://openalex.org/W4363651647, https://openalex.org/W3113331478, https://openalex.org/W3103152812 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 4, 38, 45, 54, 63, 97, 108, 142 |
| abstract_inverted_index.To | 101 |
| abstract_inverted_index.an | 27 |
| abstract_inverted_index.as | 13, 26 |
| abstract_inverted_index.by | 53 |
| abstract_inverted_index.in | 7, 31, 90 |
| abstract_inverted_index.is | 3, 15, 37 |
| abstract_inverted_index.it | 14 |
| abstract_inverted_index.of | 10, 44, 70, 81, 137, 145, 154 |
| abstract_inverted_index.on | 161 |
| abstract_inverted_index.or | 21 |
| abstract_inverted_index.to | 19, 84 |
| abstract_inverted_index.and | 140 |
| abstract_inverted_index.can | 94 |
| abstract_inverted_index.due | 83 |
| abstract_inverted_index.for | 17, 125, 164 |
| abstract_inverted_index.has | 60 |
| abstract_inverted_index.its | 77 |
| abstract_inverted_index.own | 78 |
| abstract_inverted_index.set | 80 |
| abstract_inverted_index.the | 8, 42, 68, 85, 122, 126, 135, 138, 151, 155 |
| abstract_inverted_index.via | 130 |
| abstract_inverted_index.This | 93, 119, 148 |
| abstract_inverted_index.been | 61 |
| abstract_inverted_index.data | 51 |
| abstract_inverted_index.from | 49 |
| abstract_inverted_index.high | 143 |
| abstract_inverted_index.loss | 129, 139 |
| abstract_inverted_index.make | 95 |
| abstract_inverted_index.sign | 1, 35, 48, 74, 111, 166 |
| abstract_inverted_index.task | 66 |
| abstract_inverted_index.that | 40, 114 |
| abstract_inverted_index.this | 103, 105 |
| abstract_inverted_index.with | 67 |
| abstract_inverted_index.class | 43 |
| abstract_inverted_index.given | 46 |
| abstract_inverted_index.image | 28, 58 |
| abstract_inverted_index.input | 50 |
| abstract_inverted_index.level | 144 |
| abstract_inverted_index.loss. | 118 |
| abstract_inverted_index.model | 113, 120 |
| abstract_inverted_index.novel | 109 |
| abstract_inverted_index.paper | 106, 149 |
| abstract_inverted_index.advent | 69 |
| abstract_inverted_index.margin | 117, 128 |
| abstract_inverted_index.method | 157 |
| abstract_inverted_index.neural | 55, 71 |
| abstract_inverted_index.signs. | 92 |
| abstract_inverted_index.unique | 79 |
| abstract_inverted_index.visual | 87 |
| abstract_inverted_index.Defined | 25 |
| abstract_inverted_index.Traffic | 0 |
| abstract_inverted_index.address | 102 |
| abstract_inverted_index.angular | 116, 127 |
| abstract_inverted_index.employs | 115 |
| abstract_inverted_index.pivotal | 5 |
| abstract_inverted_index.problem | 30 |
| abstract_inverted_index.results | 160 |
| abstract_inverted_index.similar | 86 |
| abstract_inverted_index.thereby | 133 |
| abstract_inverted_index.through | 158 |
| abstract_inverted_index.traffic | 23, 34, 47, 73, 91, 110, 165 |
| abstract_inverted_index.vision, | 33 |
| abstract_inverted_index.Although | 57 |
| abstract_inverted_index.Bayesian | 131 |
| abstract_inverted_index.adhering | 18 |
| abstract_inverted_index.computer | 32 |
| abstract_inverted_index.country- | 20 |
| abstract_inverted_index.critical | 16 |
| abstract_inverted_index.datasets | 163 |
| abstract_inverted_index.features | 88 |
| abstract_inverted_index.inherent | 89 |
| abstract_inverted_index.network. | 56 |
| abstract_inverted_index.presents | 76, 107 |
| abstract_inverted_index.proposed | 156 |
| abstract_inverted_index.vehicles | 12 |
| abstract_inverted_index.achieving | 141 |
| abstract_inverted_index.benchmark | 162 |
| abstract_inverted_index.designing | 96 |
| abstract_inverted_index.necessary | 123 |
| abstract_inverted_index.networks, | 72 |
| abstract_inverted_index.optimizes | 121 |
| abstract_inverted_index.processed | 52 |
| abstract_inverted_index.showcases | 150 |
| abstract_inverted_index.technique | 39 |
| abstract_inverted_index.autonomous | 11 |
| abstract_inverted_index.challenge, | 104 |
| abstract_inverted_index.challenges | 82 |
| abstract_inverted_index.classifier | 99 |
| abstract_inverted_index.considered | 62 |
| abstract_inverted_index.determines | 41 |
| abstract_inverted_index.impressive | 152 |
| abstract_inverted_index.manageable | 65 |
| abstract_inverted_index.maximizing | 134 |
| abstract_inverted_index.relatively | 64 |
| abstract_inverted_index.technology | 6 |
| abstract_inverted_index.advancement | 9 |
| abstract_inverted_index.performance | 153 |
| abstract_inverted_index.recognition | 2, 36, 112 |
| abstract_inverted_index.experimental | 159 |
| abstract_inverted_index.performance. | 147 |
| abstract_inverted_index.problematic. | 100 |
| abstract_inverted_index.regulations. | 24 |
| abstract_inverted_index.effectiveness | 136 |
| abstract_inverted_index.optimization, | 132 |
| abstract_inverted_index.softmax-based | 98 |
| abstract_inverted_index.classification | 29, 59, 75, 146 |
| abstract_inverted_index.classification. | 167 |
| abstract_inverted_index.hyperparameters | 124 |
| abstract_inverted_index.region-specific | 22 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5100774197 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I4210131650 |
| citation_normalized_percentile.value | 0.68268495 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |