Traffic Signal Control Under Mixed Traffic With Connected and Automated Vehicles: A Transfer-Based Deep Reinforcement Learning Approach Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/access.2021.3123273
Backgrounds: The traffic signal control (TSC) system could be more intelligently controlled by deep reinforcement learning (DRL) and information provided by connected and automated vehicles (CAVs). However, the direct training procedure of the DRL is time-consuming and hard to converge. Methods: This study improves the training efficiency of the deep Q network (DQN) by transferring the well-trained action policy of a previous DQN model into a target model under similar traffic scenarios. Different reward parameters, exploration rates, and action step lengths are tested. The performance of the transfer-based DQN-TSC is analyzed by considering different traffic demands and market penetration rates (MPRs) of CAVs. The information level requirements of the DQN-TSC are also investigated. Results: Compared to directly trained DQN, transfer-based models could improve both the training efficiency and model performance. In high traffic scenarios with a 100% MPR of CAVs, the total waiting time, CO2 emission, and fuel consumption in the transfer-based TSC decrease about 38%, 34%, and 34% compared to pre-timed signal schemes. Also, the transfer-based TSC system requires more than 20% to 40% MPRs of CAVs under different traffic demands to perform better than pre-timed signal schemes. Conclusions: The proposed model could improve both the traffic performance of the TSC system and the training efficiency of the DQN model. The insights of this study should be helpful to planners and engineers in designing intelligent signal intersections and providing guidance for engineering applications of the DQN TSC systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2021.3123273
- https://ieeexplore.ieee.org/ielx7/6287639/6514899/09585456.pdf
- OA Status
- gold
- Cited By
- 27
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3210291880
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3210291880Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2021.3123273Digital Object Identifier
- Title
-
Traffic Signal Control Under Mixed Traffic With Connected and Automated Vehicles: A Transfer-Based Deep Reinforcement Learning ApproachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Li Song, Wei FanList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2021.3123273Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/09585456.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/09585456.pdfDirect OA link when available
- Concepts
-
Reinforcement learning, Computer science, Transfer of learning, SIGNAL (programming language), Fuel efficiency, Transfer (computing), Artificial intelligence, Control (management), Traffic signal, Real-time computing, Automotive engineering, Engineering, Programming language, Parallel computingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
27Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 12, 2023: 8, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3210291880 |
|---|---|
| doi | https://doi.org/10.1109/access.2021.3123273 |
| ids.doi | https://doi.org/10.1109/access.2021.3123273 |
| ids.mag | 3210291880 |
| ids.openalex | https://openalex.org/W3210291880 |
| fwci | 2.78949109 |
| type | article |
| title | Traffic Signal Control Under Mixed Traffic With Connected and Automated Vehicles: A Transfer-Based Deep Reinforcement Learning Approach |
| awards[0].id | https://openalex.org/G4624329846 |
| awards[0].funder_id | https://openalex.org/F4320306108 |
| awards[0].display_name | |
| awards[0].funder_award_id | 69A3551747133 |
| awards[0].funder_display_name | U.S. Department of Transportation |
| biblio.issue | |
| biblio.volume | 9 |
| biblio.last_page | 145237 |
| biblio.first_page | 145228 |
| topics[0].id | https://openalex.org/T10524 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Traffic control and management |
| topics[1].id | https://openalex.org/T12095 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9922999739646912 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2203 |
| topics[1].subfield.display_name | Automotive Engineering |
| topics[1].display_name | Vehicle emissions and performance |
| topics[2].id | https://openalex.org/T10698 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9919000267982483 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3313 |
| topics[2].subfield.display_name | Transportation |
| topics[2].display_name | Transportation Planning and Optimization |
| funders[0].id | https://openalex.org/F4320306108 |
| funders[0].ror | https://ror.org/02xfw2e90 |
| funders[0].display_name | U.S. Department of Transportation |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8269397020339966 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7906699180603027 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C150899416 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6718693375587463 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[2].display_name | Transfer of learning |
| concepts[3].id | https://openalex.org/C2779843651 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5755810141563416 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[3].display_name | SIGNAL (programming language) |
| concepts[4].id | https://openalex.org/C45882903 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5433938503265381 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5042317 |
| concepts[4].display_name | Fuel efficiency |
| concepts[5].id | https://openalex.org/C2776175482 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49628788232803345 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1195816 |
| concepts[5].display_name | Transfer (computing) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.49505677819252014 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C2775924081 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4335383176803589 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[7].display_name | Control (management) |
| concepts[8].id | https://openalex.org/C2987419075 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4251178205013275 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8004 |
| concepts[8].display_name | Traffic signal |
| concepts[9].id | https://openalex.org/C79403827 |
| concepts[9].level | 1 |
| concepts[9].score | 0.36031076312065125 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[9].display_name | Real-time computing |
| concepts[10].id | https://openalex.org/C171146098 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2810434103012085 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q124192 |
| concepts[10].display_name | Automotive engineering |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1173388659954071 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C199360897 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[12].display_name | Programming language |
| concepts[13].id | https://openalex.org/C173608175 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[13].display_name | Parallel computing |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.8269397020339966 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7906699180603027 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[2].score | 0.6718693375587463 |
| keywords[2].display_name | Transfer of learning |
| keywords[3].id | https://openalex.org/keywords/signal |
| keywords[3].score | 0.5755810141563416 |
| keywords[3].display_name | SIGNAL (programming language) |
| keywords[4].id | https://openalex.org/keywords/fuel-efficiency |
| keywords[4].score | 0.5433938503265381 |
| keywords[4].display_name | Fuel efficiency |
| keywords[5].id | https://openalex.org/keywords/transfer |
| keywords[5].score | 0.49628788232803345 |
| keywords[5].display_name | Transfer (computing) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.49505677819252014 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/control |
| keywords[7].score | 0.4335383176803589 |
| keywords[7].display_name | Control (management) |
| keywords[8].id | https://openalex.org/keywords/traffic-signal |
| keywords[8].score | 0.4251178205013275 |
| keywords[8].display_name | Traffic signal |
| keywords[9].id | https://openalex.org/keywords/real-time-computing |
| keywords[9].score | 0.36031076312065125 |
| keywords[9].display_name | Real-time computing |
| keywords[10].id | https://openalex.org/keywords/automotive-engineering |
| keywords[10].score | 0.2810434103012085 |
| keywords[10].display_name | Automotive engineering |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.1173388659954071 |
| keywords[11].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1109/access.2021.3123273 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/09585456.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2021.3123273 |
| locations[1].id | pmh:oai:doaj.org/article:b0cc775d1a554de080d73acebd6f71a9 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 9, Pp 145228-145237 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/b0cc775d1a554de080d73acebd6f71a9 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5089438826 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4888-6045 |
| authorships[0].author.display_name | Li Song |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I102149020, https://openalex.org/I1282462722 |
| authorships[0].affiliations[0].raw_affiliation_string | USDOT Center for Advanced Multimodal Mobility Solutions and Education (CAMMSE), Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223 USA. |
| authorships[0].institutions[0].id | https://openalex.org/I1282462722 |
| authorships[0].institutions[0].ror | https://ror.org/02xfw2e90 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I1282462722 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | United States Department of Transportation |
| authorships[0].institutions[1].id | https://openalex.org/I102149020 |
| authorships[0].institutions[1].ror | https://ror.org/04dawnj30 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I102149020 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | University of North Carolina at Charlotte |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li Song |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | USDOT Center for Advanced Multimodal Mobility Solutions and Education (CAMMSE), Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223 USA. |
| authorships[1].author.id | https://openalex.org/A5074354165 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9815-710X |
| authorships[1].author.display_name | Wei Fan |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I102149020, https://openalex.org/I1282462722 |
| authorships[1].affiliations[0].raw_affiliation_string | USDOT Center for Advanced Multimodal Mobility Solutions and Education (CAMMSE), Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223 USA |
| authorships[1].institutions[0].id | https://openalex.org/I1282462722 |
| authorships[1].institutions[0].ror | https://ror.org/02xfw2e90 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I1282462722 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | United States Department of Transportation |
| authorships[1].institutions[1].id | https://openalex.org/I102149020 |
| authorships[1].institutions[1].ror | https://ror.org/04dawnj30 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I102149020 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | University of North Carolina at Charlotte |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Wei Fan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | USDOT Center for Advanced Multimodal Mobility Solutions and Education (CAMMSE), Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223 USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/09585456.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Traffic Signal Control Under Mixed Traffic With Connected and Automated Vehicles: A Transfer-Based Deep Reinforcement Learning Approach |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10524 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Traffic control and management |
| related_works | https://openalex.org/W4306904969, https://openalex.org/W2138720691, https://openalex.org/W4362501864, https://openalex.org/W4380318855, https://openalex.org/W3084456289, https://openalex.org/W2024136090, https://openalex.org/W4391331176, https://openalex.org/W4367838498, https://openalex.org/W2554897082, https://openalex.org/W4293167677 |
| cited_by_count | 27 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 12 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2021.3123273 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/09585456.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2021.3123273 |
| primary_location.id | doi:10.1109/access.2021.3123273 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/09585456.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2021.3123273 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3176344993, https://openalex.org/W2606206351, https://openalex.org/W2794842204, https://openalex.org/W2074500080, https://openalex.org/W6729224713, https://openalex.org/W2809148419, https://openalex.org/W2894849109, https://openalex.org/W2907400790, https://openalex.org/W2915117209, https://openalex.org/W1991095535, https://openalex.org/W1096769813, https://openalex.org/W2804388363, https://openalex.org/W2768952159, https://openalex.org/W2769601620, https://openalex.org/W3127561923, https://openalex.org/W6759446389, https://openalex.org/W2932627803, https://openalex.org/W2734650587, https://openalex.org/W3014845548, https://openalex.org/W3044015199, https://openalex.org/W6692471128, https://openalex.org/W2913230672, https://openalex.org/W2527545631, https://openalex.org/W2034320159, https://openalex.org/W2930070623, https://openalex.org/W1965455100, https://openalex.org/W6761650330, https://openalex.org/W2487175822, https://openalex.org/W2530621702, https://openalex.org/W2937621019, https://openalex.org/W2548134372, https://openalex.org/W3122026853, https://openalex.org/W2916670462, https://openalex.org/W3106357768 |
| referenced_works_count | 34 |
| abstract_inverted_index.Q | 50 |
| abstract_inverted_index.a | 60, 65, 135 |
| abstract_inverted_index.In | 130 |
| abstract_inverted_index.be | 8, 217 |
| abstract_inverted_index.by | 12, 20, 53, 91 |
| abstract_inverted_index.in | 149, 223 |
| abstract_inverted_index.is | 34, 89 |
| abstract_inverted_index.of | 31, 47, 59, 85, 101, 107, 138, 176, 199, 207, 213, 234 |
| abstract_inverted_index.to | 38, 115, 160, 173, 182, 219 |
| abstract_inverted_index.CO2 | 144 |
| abstract_inverted_index.DQN | 62, 209, 236 |
| abstract_inverted_index.DRL | 33 |
| abstract_inverted_index.MPR | 137 |
| abstract_inverted_index.TSC | 152, 167, 201, 237 |
| abstract_inverted_index.The | 1, 83, 103, 190, 211 |
| abstract_inverted_index.and | 17, 22, 36, 77, 96, 127, 146, 157, 203, 221, 228 |
| abstract_inverted_index.are | 81, 110 |
| abstract_inverted_index.for | 231 |
| abstract_inverted_index.the | 27, 32, 44, 48, 55, 86, 108, 124, 140, 150, 165, 196, 200, 204, 208, 235 |
| abstract_inverted_index.CAVs | 177 |
| abstract_inverted_index.DQN, | 118 |
| abstract_inverted_index.MPRs | 175 |
| abstract_inverted_index.This | 41 |
| abstract_inverted_index.also | 111 |
| abstract_inverted_index.both | 123, 195 |
| abstract_inverted_index.deep | 13, 49 |
| abstract_inverted_index.fuel | 147 |
| abstract_inverted_index.hard | 37 |
| abstract_inverted_index.high | 131 |
| abstract_inverted_index.into | 64 |
| abstract_inverted_index.more | 9, 170 |
| abstract_inverted_index.step | 79 |
| abstract_inverted_index.than | 171, 185 |
| abstract_inverted_index.this | 214 |
| abstract_inverted_index.with | 134 |
| abstract_inverted_index.(DQN) | 52 |
| abstract_inverted_index.(DRL) | 16 |
| abstract_inverted_index.(TSC) | 5 |
| abstract_inverted_index.Also, | 164 |
| abstract_inverted_index.CAVs, | 139 |
| abstract_inverted_index.CAVs. | 102 |
| abstract_inverted_index.about | 154 |
| abstract_inverted_index.could | 7, 121, 193 |
| abstract_inverted_index.level | 105 |
| abstract_inverted_index.model | 63, 67, 128, 192 |
| abstract_inverted_index.rates | 99 |
| abstract_inverted_index.study | 42, 215 |
| abstract_inverted_index.time, | 143 |
| abstract_inverted_index.total | 141 |
| abstract_inverted_index.under | 68, 178 |
| abstract_inverted_index.(MPRs) | 100 |
| abstract_inverted_index.action | 57, 78 |
| abstract_inverted_index.better | 184 |
| abstract_inverted_index.direct | 28 |
| abstract_inverted_index.market | 97 |
| abstract_inverted_index.model. | 210 |
| abstract_inverted_index.models | 120 |
| abstract_inverted_index.policy | 58 |
| abstract_inverted_index.rates, | 76 |
| abstract_inverted_index.reward | 73 |
| abstract_inverted_index.should | 216 |
| abstract_inverted_index.signal | 3, 162, 187, 226 |
| abstract_inverted_index.system | 6, 168, 202 |
| abstract_inverted_index.target | 66 |
| abstract_inverted_index.(CAVs). | 25 |
| abstract_inverted_index.DQN-TSC | 88, 109 |
| abstract_inverted_index.control | 4 |
| abstract_inverted_index.demands | 95, 181 |
| abstract_inverted_index.helpful | 218 |
| abstract_inverted_index.improve | 122, 194 |
| abstract_inverted_index.lengths | 80 |
| abstract_inverted_index.network | 51 |
| abstract_inverted_index.perform | 183 |
| abstract_inverted_index.similar | 69 |
| abstract_inverted_index.tested. | 82 |
| abstract_inverted_index.traffic | 2, 70, 94, 132, 180, 197 |
| abstract_inverted_index.trained | 117 |
| abstract_inverted_index.waiting | 142 |
| abstract_inverted_index.Compared | 114 |
| abstract_inverted_index.However, | 26 |
| abstract_inverted_index.Methods: | 40 |
| abstract_inverted_index.Results: | 113 |
| abstract_inverted_index.analyzed | 90 |
| abstract_inverted_index.compared | 159 |
| abstract_inverted_index.decrease | 153 |
| abstract_inverted_index.directly | 116 |
| abstract_inverted_index.guidance | 230 |
| abstract_inverted_index.improves | 43 |
| abstract_inverted_index.insights | 212 |
| abstract_inverted_index.learning | 15 |
| abstract_inverted_index.planners | 220 |
| abstract_inverted_index.previous | 61 |
| abstract_inverted_index.proposed | 191 |
| abstract_inverted_index.provided | 19 |
| abstract_inverted_index.requires | 169 |
| abstract_inverted_index.schemes. | 163, 188 |
| abstract_inverted_index.systems. | 238 |
| abstract_inverted_index.training | 29, 45, 125, 205 |
| abstract_inverted_index.vehicles | 24 |
| abstract_inverted_index.Different | 72 |
| abstract_inverted_index.automated | 23 |
| abstract_inverted_index.connected | 21 |
| abstract_inverted_index.converge. | 39 |
| abstract_inverted_index.designing | 224 |
| abstract_inverted_index.different | 93, 179 |
| abstract_inverted_index.emission, | 145 |
| abstract_inverted_index.engineers | 222 |
| abstract_inverted_index.pre-timed | 161, 186 |
| abstract_inverted_index.procedure | 30 |
| abstract_inverted_index.providing | 229 |
| abstract_inverted_index.scenarios | 133 |
| abstract_inverted_index.20% | 172 |
| abstract_inverted_index.34% | 158 |
| abstract_inverted_index.40% | 174 |
| abstract_inverted_index.controlled | 11 |
| abstract_inverted_index.efficiency | 46, 126, 206 |
| abstract_inverted_index.scenarios. | 71 |
| abstract_inverted_index.100% | 136 |
| abstract_inverted_index.34%, | 156 |
| abstract_inverted_index.38%, | 155 |
| abstract_inverted_index.considering | 92 |
| abstract_inverted_index.consumption | 148 |
| abstract_inverted_index.engineering | 232 |
| abstract_inverted_index.exploration | 75 |
| abstract_inverted_index.information | 18, 104 |
| abstract_inverted_index.intelligent | 225 |
| abstract_inverted_index.parameters, | 74 |
| abstract_inverted_index.penetration | 98 |
| abstract_inverted_index.performance | 84, 198 |
| abstract_inverted_index.Backgrounds: | 0 |
| abstract_inverted_index.Conclusions: | 189 |
| abstract_inverted_index.applications | 233 |
| abstract_inverted_index.performance. | 129 |
| abstract_inverted_index.requirements | 106 |
| abstract_inverted_index.transferring | 54 |
| abstract_inverted_index.well-trained | 56 |
| abstract_inverted_index.intelligently | 10 |
| abstract_inverted_index.intersections | 227 |
| abstract_inverted_index.investigated. | 112 |
| abstract_inverted_index.reinforcement | 14 |
| abstract_inverted_index.time-consuming | 35 |
| abstract_inverted_index.transfer-based | 87, 119, 151, 166 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.91302782 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |