Trainable Fixed-Point Quantization for Deep Learning Acceleration on FPGAs Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.17544
Quantization is a crucial technique for deploying deep learning models on resource-constrained devices, such as embedded FPGAs. Prior efforts mostly focus on quantizing matrix multiplications, leaving other layers like BatchNorm or shortcuts in floating-point form, even though fixed-point arithmetic is more efficient on FPGAs. A common practice is to fine-tune a pre-trained model to fixed-point for FPGA deployment, but potentially degrading accuracy. This work presents QFX, a novel trainable fixed-point quantization approach that automatically learns the binary-point position during model training. Additionally, we introduce a multiplier-free quantization strategy within QFX to minimize DSP usage. QFX is implemented as a PyTorch-based library that efficiently emulates fixed-point arithmetic, supported by FPGA HLS, in a differentiable manner during backpropagation. With minimal effort, models trained with QFX can readily be deployed through HLS, producing the same numerical results as their software counterparts. Our evaluation shows that compared to post-training quantization, QFX can quantize models trained with element-wise layers quantized to fewer bits and achieve higher accuracy on both CIFAR-10 and ImageNet datasets. We further demonstrate the efficacy of multiplier-free quantization using a state-of-the-art binarized neural network accelerator designed for an embedded FPGA (AMD Xilinx Ultra96 v2). We plan to release QFX in open-source format.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.17544
- https://arxiv.org/pdf/2401.17544
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391462652
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391462652Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.17544Digital Object Identifier
- Title
-
Trainable Fixed-Point Quantization for Deep Learning Acceleration on FPGAsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-31Full publication date if available
- Authors
-
Dingyi Dai, Yichi Zhang, Jiahao Zhang, Zhanqiu Hu, Yaohui Cai, Qi Sun, Zhiru ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.17544Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.17544Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.17544Direct OA link when available
- Concepts
-
Quantization (signal processing), Field-programmable gate array, Acceleration, Computer science, Point (geometry), Deep learning, Artificial intelligence, Algorithm, Mathematics, Physics, Embedded system, Geometry, Classical mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391462652 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.17544 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.17544 |
| ids.openalex | https://openalex.org/W4391462652 |
| fwci | |
| type | preprint |
| title | Trainable Fixed-Point Quantization for Deep Learning Acceleration on FPGAs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11992 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9537000060081482 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | CCD and CMOS Imaging Sensors |
| topics[1].id | https://openalex.org/T13114 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9122999906539917 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Image Processing Techniques and Applications |
| topics[2].id | https://openalex.org/T11105 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9110000133514404 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C28855332 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7680879235267639 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q198099 |
| concepts[0].display_name | Quantization (signal processing) |
| concepts[1].id | https://openalex.org/C42935608 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7492325305938721 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q190411 |
| concepts[1].display_name | Field-programmable gate array |
| concepts[2].id | https://openalex.org/C117896860 |
| concepts[2].level | 2 |
| concepts[2].score | 0.647318959236145 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11376 |
| concepts[2].display_name | Acceleration |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5139079093933105 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C28719098 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4781283438205719 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[4].display_name | Point (geometry) |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4437619149684906 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.43864312767982483 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.27621155977249146 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.26635414361953735 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.17299506068229675 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C149635348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1182081401348114 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[10].display_name | Embedded system |
| concepts[11].id | https://openalex.org/C2524010 |
| concepts[11].level | 1 |
| concepts[11].score | 0.07612374424934387 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[11].display_name | Geometry |
| concepts[12].id | https://openalex.org/C74650414 |
| concepts[12].level | 1 |
| concepts[12].score | 0.07114750146865845 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11397 |
| concepts[12].display_name | Classical mechanics |
| keywords[0].id | https://openalex.org/keywords/quantization |
| keywords[0].score | 0.7680879235267639 |
| keywords[0].display_name | Quantization (signal processing) |
| keywords[1].id | https://openalex.org/keywords/field-programmable-gate-array |
| keywords[1].score | 0.7492325305938721 |
| keywords[1].display_name | Field-programmable gate array |
| keywords[2].id | https://openalex.org/keywords/acceleration |
| keywords[2].score | 0.647318959236145 |
| keywords[2].display_name | Acceleration |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5139079093933105 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/point |
| keywords[4].score | 0.4781283438205719 |
| keywords[4].display_name | Point (geometry) |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.4437619149684906 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.43864312767982483 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.27621155977249146 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.26635414361953735 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.17299506068229675 |
| keywords[9].display_name | Physics |
| keywords[10].id | https://openalex.org/keywords/embedded-system |
| keywords[10].score | 0.1182081401348114 |
| keywords[10].display_name | Embedded system |
| keywords[11].id | https://openalex.org/keywords/geometry |
| keywords[11].score | 0.07612374424934387 |
| keywords[11].display_name | Geometry |
| keywords[12].id | https://openalex.org/keywords/classical-mechanics |
| keywords[12].score | 0.07114750146865845 |
| keywords[12].display_name | Classical mechanics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.17544 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.17544 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.17544 |
| locations[1].id | doi:10.48550/arxiv.2401.17544 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.17544 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101299944 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Dingyi Dai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dai, Dingyi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100444205 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-1156-5538 |
| authorships[1].author.display_name | Yichi Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Yichi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101463934 |
| authorships[2].author.orcid | https://orcid.org/0009-0005-1993-8132 |
| authorships[2].author.display_name | Jiahao Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Jiahao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5071100772 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Zhanqiu Hu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hu, Zhanqiu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5006604318 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1138-6861 |
| authorships[4].author.display_name | Yaohui Cai |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Cai, Yaohui |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5102033281 |
| authorships[5].author.orcid | https://orcid.org/0009-0002-6979-6038 |
| authorships[5].author.display_name | Qi Sun |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sun, Qi |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5037210004 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0778-0308 |
| authorships[6].author.display_name | Zhiru Zhang |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Zhang, Zhiru |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.17544 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-02-02T00:00:00 |
| display_name | Trainable Fixed-Point Quantization for Deep Learning Acceleration on FPGAs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11992 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9537000060081482 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | CCD and CMOS Imaging Sensors |
| related_works | https://openalex.org/W2111241003, https://openalex.org/W4200391368, https://openalex.org/W2210979487, https://openalex.org/W2074043759, https://openalex.org/W3042736233, https://openalex.org/W2082487009, https://openalex.org/W2373535795, https://openalex.org/W4375867731, https://openalex.org/W2406926880, https://openalex.org/W4237139544 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.17544 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.17544 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.17544 |
| primary_location.id | pmh:oai:arXiv.org:2401.17544 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.17544 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.17544 |
| publication_date | 2024-01-31 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 44 |
| abstract_inverted_index.a | 2, 50, 66, 84, 98, 111, 177 |
| abstract_inverted_index.We | 168, 192 |
| abstract_inverted_index.an | 185 |
| abstract_inverted_index.as | 14, 97, 134 |
| abstract_inverted_index.be | 125 |
| abstract_inverted_index.by | 107 |
| abstract_inverted_index.in | 32, 110, 197 |
| abstract_inverted_index.is | 1, 39, 47, 95 |
| abstract_inverted_index.of | 173 |
| abstract_inverted_index.on | 10, 21, 42, 162 |
| abstract_inverted_index.or | 30 |
| abstract_inverted_index.to | 48, 53, 90, 143, 155, 194 |
| abstract_inverted_index.we | 82 |
| abstract_inverted_index.DSP | 92 |
| abstract_inverted_index.Our | 138 |
| abstract_inverted_index.QFX | 89, 94, 122, 146, 196 |
| abstract_inverted_index.and | 158, 165 |
| abstract_inverted_index.but | 58 |
| abstract_inverted_index.can | 123, 147 |
| abstract_inverted_index.for | 5, 55, 184 |
| abstract_inverted_index.the | 75, 130, 171 |
| abstract_inverted_index.(AMD | 188 |
| abstract_inverted_index.FPGA | 56, 108, 187 |
| abstract_inverted_index.HLS, | 109, 128 |
| abstract_inverted_index.QFX, | 65 |
| abstract_inverted_index.This | 62 |
| abstract_inverted_index.With | 116 |
| abstract_inverted_index.bits | 157 |
| abstract_inverted_index.both | 163 |
| abstract_inverted_index.deep | 7 |
| abstract_inverted_index.even | 35 |
| abstract_inverted_index.like | 28 |
| abstract_inverted_index.more | 40 |
| abstract_inverted_index.plan | 193 |
| abstract_inverted_index.same | 131 |
| abstract_inverted_index.such | 13 |
| abstract_inverted_index.that | 72, 101, 141 |
| abstract_inverted_index.v2). | 191 |
| abstract_inverted_index.with | 121, 151 |
| abstract_inverted_index.work | 63 |
| abstract_inverted_index.Prior | 17 |
| abstract_inverted_index.fewer | 156 |
| abstract_inverted_index.focus | 20 |
| abstract_inverted_index.form, | 34 |
| abstract_inverted_index.model | 52, 79 |
| abstract_inverted_index.novel | 67 |
| abstract_inverted_index.other | 26 |
| abstract_inverted_index.shows | 140 |
| abstract_inverted_index.their | 135 |
| abstract_inverted_index.using | 176 |
| abstract_inverted_index.FPGAs. | 16, 43 |
| abstract_inverted_index.Xilinx | 189 |
| abstract_inverted_index.common | 45 |
| abstract_inverted_index.during | 78, 114 |
| abstract_inverted_index.higher | 160 |
| abstract_inverted_index.layers | 27, 153 |
| abstract_inverted_index.learns | 74 |
| abstract_inverted_index.manner | 113 |
| abstract_inverted_index.matrix | 23 |
| abstract_inverted_index.models | 9, 119, 149 |
| abstract_inverted_index.mostly | 19 |
| abstract_inverted_index.neural | 180 |
| abstract_inverted_index.though | 36 |
| abstract_inverted_index.usage. | 93 |
| abstract_inverted_index.within | 88 |
| abstract_inverted_index.Ultra96 | 190 |
| abstract_inverted_index.achieve | 159 |
| abstract_inverted_index.crucial | 3 |
| abstract_inverted_index.effort, | 118 |
| abstract_inverted_index.efforts | 18 |
| abstract_inverted_index.format. | 199 |
| abstract_inverted_index.further | 169 |
| abstract_inverted_index.leaving | 25 |
| abstract_inverted_index.library | 100 |
| abstract_inverted_index.minimal | 117 |
| abstract_inverted_index.network | 181 |
| abstract_inverted_index.readily | 124 |
| abstract_inverted_index.release | 195 |
| abstract_inverted_index.results | 133 |
| abstract_inverted_index.through | 127 |
| abstract_inverted_index.trained | 120, 150 |
| abstract_inverted_index.CIFAR-10 | 164 |
| abstract_inverted_index.ImageNet | 166 |
| abstract_inverted_index.accuracy | 161 |
| abstract_inverted_index.approach | 71 |
| abstract_inverted_index.compared | 142 |
| abstract_inverted_index.deployed | 126 |
| abstract_inverted_index.designed | 183 |
| abstract_inverted_index.devices, | 12 |
| abstract_inverted_index.efficacy | 172 |
| abstract_inverted_index.embedded | 15, 186 |
| abstract_inverted_index.emulates | 103 |
| abstract_inverted_index.learning | 8 |
| abstract_inverted_index.minimize | 91 |
| abstract_inverted_index.position | 77 |
| abstract_inverted_index.practice | 46 |
| abstract_inverted_index.presents | 64 |
| abstract_inverted_index.quantize | 148 |
| abstract_inverted_index.software | 136 |
| abstract_inverted_index.strategy | 87 |
| abstract_inverted_index.BatchNorm | 29 |
| abstract_inverted_index.accuracy. | 61 |
| abstract_inverted_index.binarized | 179 |
| abstract_inverted_index.datasets. | 167 |
| abstract_inverted_index.degrading | 60 |
| abstract_inverted_index.deploying | 6 |
| abstract_inverted_index.efficient | 41 |
| abstract_inverted_index.fine-tune | 49 |
| abstract_inverted_index.introduce | 83 |
| abstract_inverted_index.numerical | 132 |
| abstract_inverted_index.producing | 129 |
| abstract_inverted_index.quantized | 154 |
| abstract_inverted_index.shortcuts | 31 |
| abstract_inverted_index.supported | 106 |
| abstract_inverted_index.technique | 4 |
| abstract_inverted_index.trainable | 68 |
| abstract_inverted_index.training. | 80 |
| abstract_inverted_index.arithmetic | 38 |
| abstract_inverted_index.evaluation | 139 |
| abstract_inverted_index.quantizing | 22 |
| abstract_inverted_index.accelerator | 182 |
| abstract_inverted_index.arithmetic, | 105 |
| abstract_inverted_index.demonstrate | 170 |
| abstract_inverted_index.deployment, | 57 |
| abstract_inverted_index.efficiently | 102 |
| abstract_inverted_index.fixed-point | 37, 54, 69, 104 |
| abstract_inverted_index.implemented | 96 |
| abstract_inverted_index.open-source | 198 |
| abstract_inverted_index.potentially | 59 |
| abstract_inverted_index.pre-trained | 51 |
| abstract_inverted_index.Quantization | 0 |
| abstract_inverted_index.binary-point | 76 |
| abstract_inverted_index.element-wise | 152 |
| abstract_inverted_index.quantization | 70, 86, 175 |
| abstract_inverted_index.Additionally, | 81 |
| abstract_inverted_index.PyTorch-based | 99 |
| abstract_inverted_index.automatically | 73 |
| abstract_inverted_index.counterparts. | 137 |
| abstract_inverted_index.post-training | 144 |
| abstract_inverted_index.quantization, | 145 |
| abstract_inverted_index.differentiable | 112 |
| abstract_inverted_index.floating-point | 33 |
| abstract_inverted_index.multiplier-free | 85, 174 |
| abstract_inverted_index.backpropagation. | 115 |
| abstract_inverted_index.multiplications, | 24 |
| abstract_inverted_index.state-of-the-art | 178 |
| abstract_inverted_index.resource-constrained | 11 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |