Training and inference Time Efficiency Assessment Framework for machine learning algorithms: A case study for hyperspectral image classification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.jag.2025.104591
The increasing complexity and scale of remote sensing datasets, coupled with the challenges of accurately estimating algorithmic time efficiency, often lead to significant resource waste or even failure when using machine learning algorithms in urgent or resource-constrained scenarios. Accurate time efficiency estimation is critical for deploying effective algorithms, yet it remains challenging due to the many factors influencing computational performance. Traditional methods of evaluating time efficiency often neglect the effects of core model parameters and complex data scales in spectral and temporal dimensions. In addition, inference time, an essential factor in real-world applications, is often overlooked. To address these limitations, we propose the Time Efficiency Assessment Framework (TEAF), a novel method for evaluating the time efficiency of machine learning algorithms. Through mathematical reasoning, TEAF models the training and inference time as functions (ψ) of complex data scales and core model parameters. The strong linear correlation between ψ and the actual runtime allows TEAF to accurately predict the time and cost of machine learning tasks with a low computational overhead before algorithm execution. To validate this framework, we derived TEAF formulations for five classical machine learning algorithms and tested them on state-of-the-art hyperspectral image datasets and Sentinel-2 multispectral datasets. The results demonstrated that TEAF could accurately predict both training and inference time for various algorithms, with a strong linear correlation between ψ and actual runtime (R2>0.942). This study offers a practical solution to the challenges posed by the increasing volume and complexity of data in remote sensing image processing. The code is available at https://github.com/SCUT-CCNL/TEAF.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.jag.2025.104591
- OA Status
- gold
- Cited By
- 2
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410849965
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410849965Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.jag.2025.104591Digital Object Identifier
- Title
-
Training and inference Time Efficiency Assessment Framework for machine learning algorithms: A case study for hyperspectral image classificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-29Full publication date if available
- Authors
-
Xiaorou Zheng, Jianxin Jia, Shoubin Dong, Yawei Wang, Runuo Lu, Yuwei Chen, Yueming WangList of authors in order
- Landing page
-
https://doi.org/10.1016/j.jag.2025.104591Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.jag.2025.104591Direct OA link when available
- Concepts
-
Hyperspectral imaging, Inference, Machine learning, Training (meteorology), Artificial intelligence, Image (mathematics), Computer science, Algorithm, Training set, Pattern recognition (psychology), Data mining, Geography, MeteorologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410849965 |
|---|---|
| doi | https://doi.org/10.1016/j.jag.2025.104591 |
| ids.doi | https://doi.org/10.1016/j.jag.2025.104591 |
| ids.openalex | https://openalex.org/W4410849965 |
| fwci | 9.63949029 |
| type | article |
| title | Training and inference Time Efficiency Assessment Framework for machine learning algorithms: A case study for hyperspectral image classification |
| awards[0].id | https://openalex.org/G7900852019 |
| awards[0].funder_id | https://openalex.org/F4320321921 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2021A1515011942 |
| awards[0].funder_display_name | Natural Science Foundation of Guangdong Province |
| awards[1].id | https://openalex.org/G137841415 |
| awards[1].funder_id | https://openalex.org/F4320321108 |
| awards[1].display_name | |
| awards[1].funder_award_id | 349229 |
| awards[1].funder_display_name | Academy of Finland |
| biblio.issue | |
| biblio.volume | 141 |
| biblio.last_page | 104591 |
| biblio.first_page | 104591 |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9976000189781189 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T10689 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9970999956130981 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Remote-Sensing Image Classification |
| topics[2].id | https://openalex.org/T10057 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.995199978351593 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Face and Expression Recognition |
| funders[0].id | https://openalex.org/F4320321108 |
| funders[0].ror | https://ror.org/05k73zm37 |
| funders[0].display_name | Academy of Finland |
| funders[1].id | https://openalex.org/F4320321921 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Guangdong Province |
| is_xpac | False |
| apc_list.value | 2250 |
| apc_list.currency | USD |
| apc_list.value_usd | 2250 |
| apc_paid.value | 2250 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2250 |
| concepts[0].id | https://openalex.org/C159078339 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8476073741912842 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[0].display_name | Hyperspectral imaging |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6440956592559814 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5570552349090576 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C2777211547 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5450369119644165 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[3].display_name | Training (meteorology) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5086046457290649 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C115961682 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4698559045791626 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[5].display_name | Image (mathematics) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.45139947533607483 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4325099587440491 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C51632099 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42237389087677 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[8].display_name | Training set |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.37320947647094727 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.355482280254364 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.30498629808425903 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C153294291 |
| concepts[12].level | 1 |
| concepts[12].score | 0.07776647806167603 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[12].display_name | Meteorology |
| keywords[0].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[0].score | 0.8476073741912842 |
| keywords[0].display_name | Hyperspectral imaging |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.6440956592559814 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.5570552349090576 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/training |
| keywords[3].score | 0.5450369119644165 |
| keywords[3].display_name | Training (meteorology) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5086046457290649 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/image |
| keywords[5].score | 0.4698559045791626 |
| keywords[5].display_name | Image (mathematics) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.45139947533607483 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.4325099587440491 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/training-set |
| keywords[8].score | 0.42237389087677 |
| keywords[8].display_name | Training set |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.37320947647094727 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.355482280254364 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.30498629808425903 |
| keywords[11].display_name | Geography |
| keywords[12].id | https://openalex.org/keywords/meteorology |
| keywords[12].score | 0.07776647806167603 |
| keywords[12].display_name | Meteorology |
| language | en |
| locations[0].id | doi:10.1016/j.jag.2025.104591 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210179989 |
| locations[0].source.issn | 1569-8432, 1872-826X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1569-8432 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Applied Earth Observation and Geoinformation |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Applied Earth Observation and Geoinformation |
| locations[0].landing_page_url | https://doi.org/10.1016/j.jag.2025.104591 |
| locations[1].id | pmh:oai:doaj.org/article:d26e7cc9032d4811be37447ebc65246b |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | International Journal of Applied Earth Observations and Geoinformation, Vol 141, Iss , Pp 104591- (2025) |
| locations[1].landing_page_url | https://doaj.org/article/d26e7cc9032d4811be37447ebc65246b |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5087587101 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4941-5907 |
| authorships[0].author.display_name | Xiaorou Zheng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaorou Zheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5084735407 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4366-4547 |
| authorships[1].author.display_name | Jianxin Jia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jianxin Jia |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5052760299 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0153-850X |
| authorships[2].author.display_name | Shoubin Dong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shoubin Dong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100434930 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4578-852X |
| authorships[3].author.display_name | Yawei Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yawei Wang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5109214711 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Runuo Lu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Runuo Lu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100374346 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0148-3609 |
| authorships[5].author.display_name | Yuwei Chen |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yuwei Chen |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100741363 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7742-0722 |
| authorships[6].author.display_name | Yueming Wang |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yueming Wang |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.jag.2025.104591 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Training and inference Time Efficiency Assessment Framework for machine learning algorithms: A case study for hyperspectral image classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9976000189781189 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2072166414, https://openalex.org/W3209970181, https://openalex.org/W2060875994, https://openalex.org/W3034375524, https://openalex.org/W4230131218, https://openalex.org/W2404757046, https://openalex.org/W2070598848, https://openalex.org/W2019190440, https://openalex.org/W4394050964, https://openalex.org/W2551249631 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.jag.2025.104591 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210179989 |
| best_oa_location.source.issn | 1569-8432, 1872-826X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1569-8432 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Applied Earth Observation and Geoinformation |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Applied Earth Observation and Geoinformation |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.jag.2025.104591 |
| primary_location.id | doi:10.1016/j.jag.2025.104591 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210179989 |
| primary_location.source.issn | 1569-8432, 1872-826X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1569-8432 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Applied Earth Observation and Geoinformation |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Applied Earth Observation and Geoinformation |
| primary_location.landing_page_url | https://doi.org/10.1016/j.jag.2025.104591 |
| publication_date | 2025-05-29 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W6869822768, https://openalex.org/W6876102562, https://openalex.org/W2911964244, https://openalex.org/W4386047745, https://openalex.org/W2103304742, https://openalex.org/W2119821739, https://openalex.org/W2122111042, https://openalex.org/W2559615147, https://openalex.org/W4402038093, https://openalex.org/W4403147069, https://openalex.org/W6877698179, https://openalex.org/W6874586350, https://openalex.org/W4400187534, https://openalex.org/W4396719708, https://openalex.org/W2044468884, https://openalex.org/W1996777760, https://openalex.org/W3127812658, https://openalex.org/W6714326709, https://openalex.org/W3177182473, https://openalex.org/W6798413682, https://openalex.org/W1968536280, https://openalex.org/W3210128494, https://openalex.org/W4400412004, https://openalex.org/W3013080934, https://openalex.org/W4402842812, https://openalex.org/W4406070789, https://openalex.org/W3093981769, https://openalex.org/W6874326547, https://openalex.org/W3167292039, https://openalex.org/W2142827986, https://openalex.org/W6840360099, https://openalex.org/W2090792028, https://openalex.org/W2032393026, https://openalex.org/W6809980186, https://openalex.org/W3120745352, https://openalex.org/W4243723980, https://openalex.org/W4239510810, https://openalex.org/W1594031697, https://openalex.org/W2408883065, https://openalex.org/W4229697706, https://openalex.org/W4400405274, https://openalex.org/W2990138404, https://openalex.org/W4404061011, https://openalex.org/W4408265631, https://openalex.org/W4406219156, https://openalex.org/W4285124290, https://openalex.org/W4246219036, https://openalex.org/W4224058197, https://openalex.org/W4404238668 |
| referenced_works_count | 49 |
| abstract_inverted_index.a | 108, 165, 215, 228 |
| abstract_inverted_index.In | 83 |
| abstract_inverted_index.To | 96, 172 |
| abstract_inverted_index.an | 87 |
| abstract_inverted_index.as | 130 |
| abstract_inverted_index.at | 252 |
| abstract_inverted_index.by | 235 |
| abstract_inverted_index.in | 33, 78, 90, 243 |
| abstract_inverted_index.is | 42, 93, 250 |
| abstract_inverted_index.it | 49 |
| abstract_inverted_index.of | 5, 13, 62, 70, 116, 133, 160, 241 |
| abstract_inverted_index.on | 189 |
| abstract_inverted_index.or | 25, 35 |
| abstract_inverted_index.to | 21, 53, 153, 231 |
| abstract_inverted_index.we | 100, 176 |
| abstract_inverted_index.ψ | 146, 220 |
| abstract_inverted_index.The | 0, 141, 198, 248 |
| abstract_inverted_index.and | 3, 74, 80, 127, 137, 147, 158, 186, 194, 208, 221, 239 |
| abstract_inverted_index.due | 52 |
| abstract_inverted_index.for | 44, 111, 180, 211 |
| abstract_inverted_index.low | 166 |
| abstract_inverted_index.the | 11, 54, 68, 102, 113, 125, 148, 156, 232, 236 |
| abstract_inverted_index.yet | 48 |
| abstract_inverted_index.(ψ) | 132 |
| abstract_inverted_index.TEAF | 123, 152, 178, 202 |
| abstract_inverted_index.This | 225 |
| abstract_inverted_index.Time | 103 |
| abstract_inverted_index.both | 206 |
| abstract_inverted_index.code | 249 |
| abstract_inverted_index.core | 71, 138 |
| abstract_inverted_index.cost | 159 |
| abstract_inverted_index.data | 76, 135, 242 |
| abstract_inverted_index.even | 26 |
| abstract_inverted_index.five | 181 |
| abstract_inverted_index.lead | 20 |
| abstract_inverted_index.many | 55 |
| abstract_inverted_index.that | 201 |
| abstract_inverted_index.them | 188 |
| abstract_inverted_index.this | 174 |
| abstract_inverted_index.time | 17, 39, 64, 114, 129, 157, 210 |
| abstract_inverted_index.when | 28 |
| abstract_inverted_index.with | 10, 164, 214 |
| abstract_inverted_index.could | 203 |
| abstract_inverted_index.image | 192, 246 |
| abstract_inverted_index.model | 72, 139 |
| abstract_inverted_index.novel | 109 |
| abstract_inverted_index.often | 19, 66, 94 |
| abstract_inverted_index.posed | 234 |
| abstract_inverted_index.scale | 4 |
| abstract_inverted_index.study | 226 |
| abstract_inverted_index.tasks | 163 |
| abstract_inverted_index.these | 98 |
| abstract_inverted_index.time, | 86 |
| abstract_inverted_index.using | 29 |
| abstract_inverted_index.waste | 24 |
| abstract_inverted_index.actual | 149, 222 |
| abstract_inverted_index.allows | 151 |
| abstract_inverted_index.before | 169 |
| abstract_inverted_index.factor | 89 |
| abstract_inverted_index.linear | 143, 217 |
| abstract_inverted_index.method | 110 |
| abstract_inverted_index.models | 124 |
| abstract_inverted_index.offers | 227 |
| abstract_inverted_index.remote | 6, 244 |
| abstract_inverted_index.scales | 77, 136 |
| abstract_inverted_index.strong | 142, 216 |
| abstract_inverted_index.tested | 187 |
| abstract_inverted_index.urgent | 34 |
| abstract_inverted_index.volume | 238 |
| abstract_inverted_index.(TEAF), | 107 |
| abstract_inverted_index.Through | 120 |
| abstract_inverted_index.address | 97 |
| abstract_inverted_index.between | 145, 219 |
| abstract_inverted_index.complex | 75, 134 |
| abstract_inverted_index.coupled | 9 |
| abstract_inverted_index.derived | 177 |
| abstract_inverted_index.effects | 69 |
| abstract_inverted_index.factors | 56 |
| abstract_inverted_index.failure | 27 |
| abstract_inverted_index.machine | 30, 117, 161, 183 |
| abstract_inverted_index.methods | 61 |
| abstract_inverted_index.neglect | 67 |
| abstract_inverted_index.predict | 155, 205 |
| abstract_inverted_index.propose | 101 |
| abstract_inverted_index.remains | 50 |
| abstract_inverted_index.results | 199 |
| abstract_inverted_index.runtime | 150, 223 |
| abstract_inverted_index.sensing | 7, 245 |
| abstract_inverted_index.various | 212 |
| abstract_inverted_index.Accurate | 38 |
| abstract_inverted_index.critical | 43 |
| abstract_inverted_index.datasets | 193 |
| abstract_inverted_index.learning | 31, 118, 162, 184 |
| abstract_inverted_index.overhead | 168 |
| abstract_inverted_index.resource | 23 |
| abstract_inverted_index.solution | 230 |
| abstract_inverted_index.spectral | 79 |
| abstract_inverted_index.temporal | 81 |
| abstract_inverted_index.training | 126, 207 |
| abstract_inverted_index.validate | 173 |
| abstract_inverted_index.Framework | 106 |
| abstract_inverted_index.addition, | 84 |
| abstract_inverted_index.algorithm | 170 |
| abstract_inverted_index.available | 251 |
| abstract_inverted_index.classical | 182 |
| abstract_inverted_index.datasets, | 8 |
| abstract_inverted_index.datasets. | 197 |
| abstract_inverted_index.deploying | 45 |
| abstract_inverted_index.effective | 46 |
| abstract_inverted_index.essential | 88 |
| abstract_inverted_index.functions | 131 |
| abstract_inverted_index.inference | 85, 128, 209 |
| abstract_inverted_index.practical | 229 |
| abstract_inverted_index.Assessment | 105 |
| abstract_inverted_index.Efficiency | 104 |
| abstract_inverted_index.Sentinel-2 | 195 |
| abstract_inverted_index.accurately | 14, 154, 204 |
| abstract_inverted_index.algorithms | 32, 185 |
| abstract_inverted_index.challenges | 12, 233 |
| abstract_inverted_index.complexity | 2, 240 |
| abstract_inverted_index.efficiency | 40, 65, 115 |
| abstract_inverted_index.estimating | 15 |
| abstract_inverted_index.estimation | 41 |
| abstract_inverted_index.evaluating | 63, 112 |
| abstract_inverted_index.execution. | 171 |
| abstract_inverted_index.framework, | 175 |
| abstract_inverted_index.increasing | 1, 237 |
| abstract_inverted_index.parameters | 73 |
| abstract_inverted_index.real-world | 91 |
| abstract_inverted_index.reasoning, | 122 |
| abstract_inverted_index.scenarios. | 37 |
| abstract_inverted_index.(R2>0.942). | 224 |
| abstract_inverted_index.Traditional | 60 |
| abstract_inverted_index.algorithmic | 16 |
| abstract_inverted_index.algorithms, | 47, 213 |
| abstract_inverted_index.algorithms. | 119 |
| abstract_inverted_index.challenging | 51 |
| abstract_inverted_index.correlation | 144, 218 |
| abstract_inverted_index.dimensions. | 82 |
| abstract_inverted_index.efficiency, | 18 |
| abstract_inverted_index.influencing | 57 |
| abstract_inverted_index.overlooked. | 95 |
| abstract_inverted_index.parameters. | 140 |
| abstract_inverted_index.processing. | 247 |
| abstract_inverted_index.significant | 22 |
| abstract_inverted_index.demonstrated | 200 |
| abstract_inverted_index.formulations | 179 |
| abstract_inverted_index.limitations, | 99 |
| abstract_inverted_index.mathematical | 121 |
| abstract_inverted_index.performance. | 59 |
| abstract_inverted_index.applications, | 92 |
| abstract_inverted_index.computational | 58, 167 |
| abstract_inverted_index.hyperspectral | 191 |
| abstract_inverted_index.multispectral | 196 |
| abstract_inverted_index.state-of-the-art | 190 |
| abstract_inverted_index.resource-constrained | 36 |
| abstract_inverted_index.https://github.com/SCUT-CCNL/TEAF. | 253 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.97405173 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |