Training Barlow Twins with Small Batch Sizes by Using a Queue of Previous Outputs Article Swipe
Pedro de Carvalho Cayres Pinto
,
José Gabriel R. C. Gomes
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.14209/sbrt.2023.1570915729
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.14209/sbrt.2023.1570915729
We present two methods based on Barlow Twins, a self-supervised method, to improve training with smaller batches.The first method randomly drops features from the output before computing the loss to reduce the variance.The second method introduces a queue of outputs from previous batches to improve the loss estimate during training.The first method, with a batch size of 64, achieves an accuracy of 64.1%, the second method, with a batch size of 64 and 192 queued outputs, achieves an accuracy of 65.4%, while the original method, with a batch size of 256, achieves an accuracy of 66.0%.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- pt
- Landing Page
- https://doi.org/10.14209/sbrt.2023.1570915729
- https://biblioteca.sbrt.org.br/articlefile/4439.pdf
- OA Status
- gold
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387942922
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387942922Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.14209/sbrt.2023.1570915729Digital Object Identifier
- Title
-
Training Barlow Twins with Small Batch Sizes by Using a Queue of Previous OutputsWork title
- Type
-
articleOpenAlex work type
- Language
-
ptPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Pedro de Carvalho Cayres Pinto, José Gabriel R. C. GomesList of authors in order
- Landing page
-
https://doi.org/10.14209/sbrt.2023.1570915729Publisher landing page
- PDF URL
-
https://biblioteca.sbrt.org.br/articlefile/4439.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://biblioteca.sbrt.org.br/articlefile/4439.pdfDirect OA link when available
- Concepts
-
Queue, Training (meteorology), Computer science, Artificial intelligence, Computer network, Physics, MeteorologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387942922 |
|---|---|
| doi | https://doi.org/10.14209/sbrt.2023.1570915729 |
| ids.doi | https://doi.org/10.14209/sbrt.2023.1570915729 |
| ids.openalex | https://openalex.org/W4387942922 |
| fwci | 0.0 |
| type | article |
| title | Training Barlow Twins with Small Batch Sizes by Using a Queue of Previous Outputs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12072 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8815000057220459 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Algorithms |
| topics[1].id | https://openalex.org/T12423 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.7549999952316284 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1712 |
| topics[1].subfield.display_name | Software |
| topics[1].display_name | Software Reliability and Analysis Research |
| topics[2].id | https://openalex.org/T12288 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.7156999707221985 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Optimization and Search Problems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C160403385 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7278175354003906 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q220543 |
| concepts[0].display_name | Queue |
| concepts[1].id | https://openalex.org/C2777211547 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6702533960342407 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[1].display_name | Training (meteorology) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6592247486114502 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.36076855659484863 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C31258907 |
| concepts[4].level | 1 |
| concepts[4].score | 0.20689436793327332 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[4].display_name | Computer network |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.05433034896850586 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C153294291 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[6].display_name | Meteorology |
| keywords[0].id | https://openalex.org/keywords/queue |
| keywords[0].score | 0.7278175354003906 |
| keywords[0].display_name | Queue |
| keywords[1].id | https://openalex.org/keywords/training |
| keywords[1].score | 0.6702533960342407 |
| keywords[1].display_name | Training (meteorology) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6592247486114502 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.36076855659484863 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-network |
| keywords[4].score | 0.20689436793327332 |
| keywords[4].display_name | Computer network |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.05433034896850586 |
| keywords[5].display_name | Physics |
| language | pt |
| locations[0].id | doi:10.14209/sbrt.2023.1570915729 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://biblioteca.sbrt.org.br/articlefile/4439.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Anais do XLI Simpósio Brasileiro de Telecomunicações e Processamento de Sinais |
| locations[0].landing_page_url | https://doi.org/10.14209/sbrt.2023.1570915729 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5042773783 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Pedro de Carvalho Cayres Pinto |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pedro de Carvalho Cayres Pinto |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5027382066 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3242-023X |
| authorships[1].author.display_name | José Gabriel R. C. Gomes |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jose Gabriel Gomes |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://biblioteca.sbrt.org.br/articlefile/4439.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Training Barlow Twins with Small Batch Sizes by Using a Queue of Previous Outputs |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12072 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8815000057220459 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Algorithms |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W230091440, https://openalex.org/W2390279801, https://openalex.org/W2233261550, https://openalex.org/W2358668433, https://openalex.org/W2810751659, https://openalex.org/W258997015, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2997094352 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.14209/sbrt.2023.1570915729 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://biblioteca.sbrt.org.br/articlefile/4439.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Anais do XLI Simpósio Brasileiro de Telecomunicações e Processamento de Sinais |
| best_oa_location.landing_page_url | https://doi.org/10.14209/sbrt.2023.1570915729 |
| primary_location.id | doi:10.14209/sbrt.2023.1570915729 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://biblioteca.sbrt.org.br/articlefile/4439.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Anais do XLI Simpósio Brasileiro de Telecomunicações e Processamento de Sinais |
| primary_location.landing_page_url | https://doi.org/10.14209/sbrt.2023.1570915729 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3134652006, https://openalex.org/W3005680577, https://openalex.org/W2987283559, https://openalex.org/W3009561768, https://openalex.org/W3036224891, https://openalex.org/W3035060554, https://openalex.org/W3163602117, https://openalex.org/W6676297131, https://openalex.org/W6687483927, https://openalex.org/W6735463952, https://openalex.org/W3094502228, https://openalex.org/W6803870738, https://openalex.org/W3159481202, https://openalex.org/W4366208220, https://openalex.org/W3118608800, https://openalex.org/W2905060314, https://openalex.org/W1836465849, https://openalex.org/W6744513255, https://openalex.org/W4313156423, https://openalex.org/W2757910899, https://openalex.org/W2194775991, https://openalex.org/W2108598243, https://openalex.org/W3035524453, https://openalex.org/W4286695273 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 8, 36, 53, 67, 86 |
| abstract_inverted_index.64 | 71 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.an | 59, 77, 92 |
| abstract_inverted_index.of | 38, 56, 61, 70, 79, 89, 94 |
| abstract_inverted_index.on | 5 |
| abstract_inverted_index.to | 11, 29, 43 |
| abstract_inverted_index.192 | 73 |
| abstract_inverted_index.64, | 57 |
| abstract_inverted_index.and | 72 |
| abstract_inverted_index.the | 23, 27, 31, 45, 63, 82 |
| abstract_inverted_index.two | 2 |
| abstract_inverted_index.256, | 90 |
| abstract_inverted_index.from | 22, 40 |
| abstract_inverted_index.loss | 28, 46 |
| abstract_inverted_index.size | 55, 69, 88 |
| abstract_inverted_index.with | 14, 52, 66, 85 |
| abstract_inverted_index.based | 4 |
| abstract_inverted_index.batch | 54, 68, 87 |
| abstract_inverted_index.drops | 20 |
| abstract_inverted_index.first | 17, 50 |
| abstract_inverted_index.queue | 37 |
| abstract_inverted_index.while | 81 |
| abstract_inverted_index.64.1%, | 62 |
| abstract_inverted_index.65.4%, | 80 |
| abstract_inverted_index.66.0%. | 95 |
| abstract_inverted_index.Barlow | 6 |
| abstract_inverted_index.Twins, | 7 |
| abstract_inverted_index.before | 25 |
| abstract_inverted_index.during | 48 |
| abstract_inverted_index.method | 18, 34 |
| abstract_inverted_index.output | 24 |
| abstract_inverted_index.queued | 74 |
| abstract_inverted_index.reduce | 30 |
| abstract_inverted_index.second | 33, 64 |
| abstract_inverted_index.batches | 42 |
| abstract_inverted_index.improve | 12, 44 |
| abstract_inverted_index.method, | 10, 51, 65, 84 |
| abstract_inverted_index.methods | 3 |
| abstract_inverted_index.outputs | 39 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.smaller | 15 |
| abstract_inverted_index.accuracy | 60, 78, 93 |
| abstract_inverted_index.achieves | 58, 76, 91 |
| abstract_inverted_index.estimate | 47 |
| abstract_inverted_index.features | 21 |
| abstract_inverted_index.original | 83 |
| abstract_inverted_index.outputs, | 75 |
| abstract_inverted_index.previous | 41 |
| abstract_inverted_index.randomly | 19 |
| abstract_inverted_index.training | 13 |
| abstract_inverted_index.computing | 26 |
| abstract_inverted_index.introduces | 35 |
| abstract_inverted_index.batches.The | 16 |
| abstract_inverted_index.training.The | 49 |
| abstract_inverted_index.variance.The | 32 |
| abstract_inverted_index.self-supervised | 9 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.16461486 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |