Training feedforward neural network using genetic algorithm to diagnose left ventricular hypertrophy Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.12928/telkomnika.v18i3.15225
In this research work, a new technique was proposed for the diagnosis of left ventricular hypertrophy (LVH) from the ECG signal. The advanced imaging techniques can be used to diagnose left ventricular hypertrophy, but it leads to time-consuming and more expensive. This proposed technique overcomes thesef issues and may serve as an efficient tool to diagnose the LVH disease. The LVH causes changes in the patterns of ECG signal which includes R wave, QRS and T wave. This proposed approach identifies the changes in the pattern and extracts the temporal, spatial and statistical features of the ECG signal using windowed filtering technique. These features were applied to the conventional classifier and also to the neural network classifier with the modified weights using a genetic algorithm. The weights were modified by combining the crossover operators such as crossover arithmetic and crossover two-point operator. The results were compared with the various classifiers and the performance of the neural network with the modified weights using a genetic algorithm is outperformed. The accuracy of the weights modified feedforward neural network is 97.5%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.12928/telkomnika.v18i3.15225
- http://journal.uad.ac.id/index.php/TELKOMNIKA/article/download/15225/8129
- OA Status
- diamond
- Cited By
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3014214656
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3014214656Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.12928/telkomnika.v18i3.15225Digital Object Identifier
- Title
-
Training feedforward neural network using genetic algorithm to diagnose left ventricular hypertrophyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-06-01Full publication date if available
- Authors
-
J. Revathi, J. Anitha, D. Jude HemanthList of authors in order
- Landing page
-
https://doi.org/10.12928/telkomnika.v18i3.15225Publisher landing page
- PDF URL
-
https://journal.uad.ac.id/index.php/TELKOMNIKA/article/download/15225/8129Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://journal.uad.ac.id/index.php/TELKOMNIKA/article/download/15225/8129Direct OA link when available
- Concepts
-
Crossover, Artificial neural network, Computer science, Feedforward neural network, Pattern recognition (psychology), QRS complex, Classifier (UML), Genetic algorithm, Algorithm, Artificial intelligence, Feed forward, Left ventricular hypertrophy, Machine learning, Medicine, Cardiology, Internal medicine, Engineering, Control engineering, Blood pressureTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 1, 2022: 2, 2021: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3014214656 |
|---|---|
| doi | https://doi.org/10.12928/telkomnika.v18i3.15225 |
| ids.doi | https://doi.org/10.12928/telkomnika.v18i3.15225 |
| ids.mag | 3014214656 |
| ids.openalex | https://openalex.org/W3014214656 |
| fwci | 1.18793485 |
| type | article |
| title | Training feedforward neural network using genetic algorithm to diagnose left ventricular hypertrophy |
| biblio.issue | 3 |
| biblio.volume | 18 |
| biblio.last_page | 1285 |
| biblio.first_page | 1285 |
| topics[0].id | https://openalex.org/T11021 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.921999990940094 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | ECG Monitoring and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C122507166 |
| concepts[0].level | 2 |
| concepts[0].score | 0.855959951877594 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q628906 |
| concepts[0].display_name | Crossover |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6619932651519775 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6528956890106201 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C47702885 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6231350302696228 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5441227 |
| concepts[3].display_name | Feedforward neural network |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5865187048912048 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C111773187 |
| concepts[5].level | 2 |
| concepts[5].score | 0.553505539894104 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1969239 |
| concepts[5].display_name | QRS complex |
| concepts[6].id | https://openalex.org/C95623464 |
| concepts[6].level | 2 |
| concepts[6].score | 0.542686939239502 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[6].display_name | Classifier (UML) |
| concepts[7].id | https://openalex.org/C8880873 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5301113128662109 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q187787 |
| concepts[7].display_name | Genetic algorithm |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.5215561389923096 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.5200393199920654 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C38858127 |
| concepts[10].level | 2 |
| concepts[10].score | 0.5144674777984619 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5441228 |
| concepts[10].display_name | Feed forward |
| concepts[11].id | https://openalex.org/C2776002628 |
| concepts[11].level | 3 |
| concepts[11].score | 0.504245400428772 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1628627 |
| concepts[11].display_name | Left ventricular hypertrophy |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.23105186223983765 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.13378411531448364 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C164705383 |
| concepts[14].level | 1 |
| concepts[14].score | 0.11985808610916138 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[14].display_name | Cardiology |
| concepts[15].id | https://openalex.org/C126322002 |
| concepts[15].level | 1 |
| concepts[15].score | 0.09664496779441833 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[15].display_name | Internal medicine |
| concepts[16].id | https://openalex.org/C127413603 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[16].display_name | Engineering |
| concepts[17].id | https://openalex.org/C133731056 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q4917288 |
| concepts[17].display_name | Control engineering |
| concepts[18].id | https://openalex.org/C84393581 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q82642 |
| concepts[18].display_name | Blood pressure |
| keywords[0].id | https://openalex.org/keywords/crossover |
| keywords[0].score | 0.855959951877594 |
| keywords[0].display_name | Crossover |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.6619932651519775 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6528956890106201 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/feedforward-neural-network |
| keywords[3].score | 0.6231350302696228 |
| keywords[3].display_name | Feedforward neural network |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.5865187048912048 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/qrs-complex |
| keywords[5].score | 0.553505539894104 |
| keywords[5].display_name | QRS complex |
| keywords[6].id | https://openalex.org/keywords/classifier |
| keywords[6].score | 0.542686939239502 |
| keywords[6].display_name | Classifier (UML) |
| keywords[7].id | https://openalex.org/keywords/genetic-algorithm |
| keywords[7].score | 0.5301113128662109 |
| keywords[7].display_name | Genetic algorithm |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.5215561389923096 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.5200393199920654 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/feed-forward |
| keywords[10].score | 0.5144674777984619 |
| keywords[10].display_name | Feed forward |
| keywords[11].id | https://openalex.org/keywords/left-ventricular-hypertrophy |
| keywords[11].score | 0.504245400428772 |
| keywords[11].display_name | Left ventricular hypertrophy |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.23105186223983765 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/medicine |
| keywords[13].score | 0.13378411531448364 |
| keywords[13].display_name | Medicine |
| keywords[14].id | https://openalex.org/keywords/cardiology |
| keywords[14].score | 0.11985808610916138 |
| keywords[14].display_name | Cardiology |
| keywords[15].id | https://openalex.org/keywords/internal-medicine |
| keywords[15].score | 0.09664496779441833 |
| keywords[15].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.12928/telkomnika.v18i3.15225 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2972808588 |
| locations[0].source.issn | 1693-6930, 2302-9293 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1693-6930 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | TELKOMNIKA (Telecommunication Computing Electronics and Control) |
| locations[0].source.host_organization | https://openalex.org/P4310319805 |
| locations[0].source.host_organization_name | Ahmad Dahlan University |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319805 |
| locations[0].source.host_organization_lineage_names | Ahmad Dahlan University |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | http://journal.uad.ac.id/index.php/TELKOMNIKA/article/download/15225/8129 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | TELKOMNIKA (Telecommunication Computing Electronics and Control) |
| locations[0].landing_page_url | https://doi.org/10.12928/telkomnika.v18i3.15225 |
| locations[1].id | pmh:oai:oai.ojsuad.telkomnika.com:article/15225 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | TELKOMNIKA (Telecommunication Computing Electronics and Control); Vol 18, No 3: June 2020; 1285-1291 |
| locations[1].landing_page_url | http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/15225 |
| locations[2].id | pmh:oai:zenodo.org:3945876 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400562 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[2].source.host_organization | https://openalex.org/I67311998 |
| locations[2].source.host_organization_name | European Organization for Nuclear Research |
| locations[2].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | TELKOMNIKA Telecommunication, Computing, Electronics and Control, 18(3), 1285 - 1291, (2020-06-01) |
| locations[2].landing_page_url | https://zenodo.org/record/3945876 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5109706775 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | J. Revathi |
| authorships[0].affiliations[0].raw_affiliation_string | KIT-Kalaignarkarunanidhi Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | J. Revathi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | KIT-Kalaignarkarunanidhi Institute of Technology |
| authorships[1].author.id | https://openalex.org/A5056312428 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | J. Anitha |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I119668213 |
| authorships[1].affiliations[0].raw_affiliation_string | Karunya Institute of Technology and Sciences |
| authorships[1].institutions[0].id | https://openalex.org/I119668213 |
| authorships[1].institutions[0].ror | https://ror.org/03k23nv15 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I119668213 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Karunya University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | J. Anitha |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Karunya Institute of Technology and Sciences |
| authorships[2].author.id | https://openalex.org/A5044672544 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6091-1880 |
| authorships[2].author.display_name | D. Jude Hemanth |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I119668213 |
| authorships[2].affiliations[0].raw_affiliation_string | Karunya Institute of Technology and Sciences |
| authorships[2].institutions[0].id | https://openalex.org/I119668213 |
| authorships[2].institutions[0].ror | https://ror.org/03k23nv15 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I119668213 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Karunya University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | D. Jude Hemanth |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Karunya Institute of Technology and Sciences |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://journal.uad.ac.id/index.php/TELKOMNIKA/article/download/15225/8129 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Training feedforward neural network using genetic algorithm to diagnose left ventricular hypertrophy |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11021 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.921999990940094 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | ECG Monitoring and Analysis |
| related_works | https://openalex.org/W2332128445, https://openalex.org/W2015651861, https://openalex.org/W2115072676, https://openalex.org/W4311212821, https://openalex.org/W2045727192, https://openalex.org/W2102065768, https://openalex.org/W1529660427, https://openalex.org/W3121106353, https://openalex.org/W2090361488, https://openalex.org/W2158578859 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 1 |
| counts_by_year[6].year | 2018 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.12928/telkomnika.v18i3.15225 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2972808588 |
| best_oa_location.source.issn | 1693-6930, 2302-9293 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1693-6930 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | TELKOMNIKA (Telecommunication Computing Electronics and Control) |
| best_oa_location.source.host_organization | https://openalex.org/P4310319805 |
| best_oa_location.source.host_organization_name | Ahmad Dahlan University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319805 |
| best_oa_location.source.host_organization_lineage_names | Ahmad Dahlan University |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | http://journal.uad.ac.id/index.php/TELKOMNIKA/article/download/15225/8129 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | TELKOMNIKA (Telecommunication Computing Electronics and Control) |
| best_oa_location.landing_page_url | https://doi.org/10.12928/telkomnika.v18i3.15225 |
| primary_location.id | doi:10.12928/telkomnika.v18i3.15225 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2972808588 |
| primary_location.source.issn | 1693-6930, 2302-9293 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1693-6930 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | TELKOMNIKA (Telecommunication Computing Electronics and Control) |
| primary_location.source.host_organization | https://openalex.org/P4310319805 |
| primary_location.source.host_organization_name | Ahmad Dahlan University |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319805 |
| primary_location.source.host_organization_lineage_names | Ahmad Dahlan University |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | http://journal.uad.ac.id/index.php/TELKOMNIKA/article/download/15225/8129 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | TELKOMNIKA (Telecommunication Computing Electronics and Control) |
| primary_location.landing_page_url | https://doi.org/10.12928/telkomnika.v18i3.15225 |
| publication_date | 2020-06-01 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.R | 71 |
| abstract_inverted_index.T | 75 |
| abstract_inverted_index.a | 4, 122, 162 |
| abstract_inverted_index.an | 51 |
| abstract_inverted_index.as | 50, 135 |
| abstract_inverted_index.be | 26 |
| abstract_inverted_index.by | 129 |
| abstract_inverted_index.in | 63, 83 |
| abstract_inverted_index.is | 165, 176 |
| abstract_inverted_index.it | 34 |
| abstract_inverted_index.of | 12, 66, 94, 153, 169 |
| abstract_inverted_index.to | 28, 36, 54, 106, 112 |
| abstract_inverted_index.ECG | 19, 67, 96 |
| abstract_inverted_index.LVH | 57, 60 |
| abstract_inverted_index.QRS | 73 |
| abstract_inverted_index.The | 21, 59, 125, 142, 167 |
| abstract_inverted_index.and | 38, 47, 74, 86, 91, 110, 138, 150 |
| abstract_inverted_index.but | 33 |
| abstract_inverted_index.can | 25 |
| abstract_inverted_index.for | 9 |
| abstract_inverted_index.may | 48 |
| abstract_inverted_index.new | 5 |
| abstract_inverted_index.the | 10, 18, 56, 64, 81, 84, 88, 95, 107, 113, 118, 131, 147, 151, 154, 158, 170 |
| abstract_inverted_index.was | 7 |
| abstract_inverted_index.This | 41, 77 |
| abstract_inverted_index.also | 111 |
| abstract_inverted_index.from | 17 |
| abstract_inverted_index.left | 13, 30 |
| abstract_inverted_index.more | 39 |
| abstract_inverted_index.such | 134 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.tool | 53 |
| abstract_inverted_index.used | 27 |
| abstract_inverted_index.were | 104, 127, 144 |
| abstract_inverted_index.with | 117, 146, 157 |
| abstract_inverted_index.(LVH) | 16 |
| abstract_inverted_index.These | 102 |
| abstract_inverted_index.leads | 35 |
| abstract_inverted_index.serve | 49 |
| abstract_inverted_index.using | 98, 121, 161 |
| abstract_inverted_index.wave, | 72 |
| abstract_inverted_index.wave. | 76 |
| abstract_inverted_index.which | 69 |
| abstract_inverted_index.work, | 3 |
| abstract_inverted_index.causes | 61 |
| abstract_inverted_index.issues | 46 |
| abstract_inverted_index.neural | 114, 155, 174 |
| abstract_inverted_index.signal | 68, 97 |
| abstract_inverted_index.thesef | 45 |
| abstract_inverted_index.applied | 105 |
| abstract_inverted_index.changes | 62, 82 |
| abstract_inverted_index.genetic | 123, 163 |
| abstract_inverted_index.imaging | 23 |
| abstract_inverted_index.network | 115, 156, 175 |
| abstract_inverted_index.pattern | 85 |
| abstract_inverted_index.results | 143 |
| abstract_inverted_index.signal. | 20 |
| abstract_inverted_index.spatial | 90 |
| abstract_inverted_index.various | 148 |
| abstract_inverted_index.weights | 120, 126, 160, 171 |
| abstract_inverted_index.accuracy | 168 |
| abstract_inverted_index.advanced | 22 |
| abstract_inverted_index.approach | 79 |
| abstract_inverted_index.compared | 145 |
| abstract_inverted_index.diagnose | 29, 55 |
| abstract_inverted_index.disease. | 58 |
| abstract_inverted_index.extracts | 87 |
| abstract_inverted_index.features | 93, 103 |
| abstract_inverted_index.includes | 70 |
| abstract_inverted_index.modified | 119, 128, 159, 172 |
| abstract_inverted_index.patterns | 65 |
| abstract_inverted_index.proposed | 8, 42, 78 |
| abstract_inverted_index.research | 2 |
| abstract_inverted_index.windowed | 99 |
| abstract_inverted_index.algorithm | 164 |
| abstract_inverted_index.combining | 130 |
| abstract_inverted_index.crossover | 132, 136, 139 |
| abstract_inverted_index.diagnosis | 11 |
| abstract_inverted_index.efficient | 52 |
| abstract_inverted_index.filtering | 100 |
| abstract_inverted_index.operator. | 141 |
| abstract_inverted_index.operators | 133 |
| abstract_inverted_index.overcomes | 44 |
| abstract_inverted_index.technique | 6, 43 |
| abstract_inverted_index.temporal, | 89 |
| abstract_inverted_index.two-point | 140 |
| abstract_inverted_index.algorithm. | 124 |
| abstract_inverted_index.arithmetic | 137 |
| abstract_inverted_index.classifier | 109, 116 |
| abstract_inverted_index.expensive. | 40 |
| abstract_inverted_index.identifies | 80 |
| abstract_inverted_index.technique. | 101 |
| abstract_inverted_index.techniques | 24 |
| abstract_inverted_index.<p>In | 0 |
| abstract_inverted_index.classifiers | 149 |
| abstract_inverted_index.feedforward | 173 |
| abstract_inverted_index.hypertrophy | 15 |
| abstract_inverted_index.performance | 152 |
| abstract_inverted_index.statistical | 92 |
| abstract_inverted_index.ventricular | 14, 31 |
| abstract_inverted_index.conventional | 108 |
| abstract_inverted_index.hypertrophy, | 32 |
| abstract_inverted_index.outperformed. | 166 |
| abstract_inverted_index.time-consuming | 37 |
| abstract_inverted_index.97.5%.</p> | 177 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.79215056 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |