Training-free Generation of Temporally Consistent Rewards from VLMs Article Swipe
YOU?
·
· 2025
· Open Access
·
Recent advances in vision-language models (VLMs) have significantly improved performance in embodied tasks such as goal decomposition and visual comprehension. However, providing accurate rewards for robotic manipulation without fine-tuning VLMs remains challenging due to the absence of domain-specific robotic knowledge in pre-trained datasets and high computational costs that hinder real-time applicability. To address this, we propose $\mathrm{T}^2$-VLM, a novel training-free, temporally consistent framework that generates accurate rewards through tracking the status changes in VLM-derived subgoals. Specifically, our method first queries the VLM to establish spatially aware subgoals and an initial completion estimate before each round of interaction. We then employ a Bayesian tracking algorithm to update the goal completion status dynamically, using subgoal hidden states to generate structured rewards for reinforcement learning (RL) agents. This approach enhances long-horizon decision-making and improves failure recovery capabilities with RL. Extensive experiments indicate that $\mathrm{T}^2$-VLM achieves state-of-the-art performance in two robot manipulation benchmarks, demonstrating superior reward accuracy with reduced computation consumption. We believe our approach not only advances reward generation techniques but also contributes to the broader field of embodied AI. Project website: https://t2-vlm.github.io/.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.04789
- https://arxiv.org/pdf/2507.04789
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415163499
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415163499Canonical identifier for this work in OpenAlex
- Title
-
Training-free Generation of Temporally Consistent Rewards from VLMsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-07Full publication date if available
- Authors
-
Yinuo Zhao, Jiale Yuan, Zhiyuan Xu, Xiaoshuai Hao, Xinyi Zhang, Kai Wu, Zhengping Che, Chi Harold Liu, Jian TangList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.04789Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.04789Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.04789Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415163499 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W4415163499 |
| fwci | 0.0 |
| type | preprint |
| title | Training-free Generation of Temporally Consistent Rewards from VLMs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12611 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8357999920845032 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Reservoir Computing |
| topics[1].id | https://openalex.org/T14011 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.8191999793052673 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Elevator Systems and Control |
| topics[2].id | https://openalex.org/T10205 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.792900025844574 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Fiber Optic Sensors |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.04789 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.04789 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.04789 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5104267514 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yinuo Zhao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhao, Yinuo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5014607639 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-3998-6768 |
| authorships[1].author.display_name | Jiale Yuan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yuan, Jiale |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5030569672 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7929-9134 |
| authorships[2].author.display_name | Zhiyuan Xu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xu, Zhiyuan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5037323143 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Xiaoshuai Hao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hao, Xiaoshuai |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100381570 |
| authorships[4].author.orcid | https://orcid.org/0009-0000-9618-5799 |
| authorships[4].author.display_name | Xinyi Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhang, Xinyi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5038287652 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5016-0251 |
| authorships[5].author.display_name | Kai Wu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wu, Kun |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5079044416 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6818-1125 |
| authorships[6].author.display_name | Zhengping Che |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Che, Zhengping |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5102923184 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0252-329X |
| authorships[7].author.display_name | Chi Harold Liu |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Liu, Chi Harold |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5101736963 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-0332-1224 |
| authorships[8].author.display_name | Jian Tang |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Tang, Jian |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.04789 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-14T00:00:00 |
| display_name | Training-free Generation of Temporally Consistent Rewards from VLMs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T12611 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8357999920845032 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Reservoir Computing |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.04789 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.04789 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.04789 |
| primary_location.id | pmh:oai:arXiv.org:2507.04789 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.04789 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.04789 |
| publication_date | 2025-07-07 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 57, 100 |
| abstract_inverted_index.To | 51 |
| abstract_inverted_index.We | 97, 157 |
| abstract_inverted_index.an | 88 |
| abstract_inverted_index.as | 14 |
| abstract_inverted_index.in | 2, 10, 40, 72, 144 |
| abstract_inverted_index.of | 36, 95, 174 |
| abstract_inverted_index.to | 33, 82, 104, 115, 170 |
| abstract_inverted_index.we | 54 |
| abstract_inverted_index.AI. | 176 |
| abstract_inverted_index.RL. | 135 |
| abstract_inverted_index.VLM | 81 |
| abstract_inverted_index.and | 17, 43, 87, 129 |
| abstract_inverted_index.but | 167 |
| abstract_inverted_index.due | 32 |
| abstract_inverted_index.for | 24, 119 |
| abstract_inverted_index.not | 161 |
| abstract_inverted_index.our | 76, 159 |
| abstract_inverted_index.the | 34, 69, 80, 106, 171 |
| abstract_inverted_index.two | 145 |
| abstract_inverted_index.(RL) | 122 |
| abstract_inverted_index.This | 124 |
| abstract_inverted_index.VLMs | 29 |
| abstract_inverted_index.also | 168 |
| abstract_inverted_index.each | 93 |
| abstract_inverted_index.goal | 15, 107 |
| abstract_inverted_index.have | 6 |
| abstract_inverted_index.high | 44 |
| abstract_inverted_index.only | 162 |
| abstract_inverted_index.such | 13 |
| abstract_inverted_index.that | 47, 63, 139 |
| abstract_inverted_index.then | 98 |
| abstract_inverted_index.with | 134, 153 |
| abstract_inverted_index.aware | 85 |
| abstract_inverted_index.costs | 46 |
| abstract_inverted_index.field | 173 |
| abstract_inverted_index.first | 78 |
| abstract_inverted_index.novel | 58 |
| abstract_inverted_index.robot | 146 |
| abstract_inverted_index.round | 94 |
| abstract_inverted_index.tasks | 12 |
| abstract_inverted_index.this, | 53 |
| abstract_inverted_index.using | 111 |
| abstract_inverted_index.(VLMs) | 5 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.before | 92 |
| abstract_inverted_index.employ | 99 |
| abstract_inverted_index.hidden | 113 |
| abstract_inverted_index.hinder | 48 |
| abstract_inverted_index.method | 77 |
| abstract_inverted_index.models | 4 |
| abstract_inverted_index.reward | 151, 164 |
| abstract_inverted_index.states | 114 |
| abstract_inverted_index.status | 70, 109 |
| abstract_inverted_index.update | 105 |
| abstract_inverted_index.visual | 18 |
| abstract_inverted_index.Project | 177 |
| abstract_inverted_index.absence | 35 |
| abstract_inverted_index.address | 52 |
| abstract_inverted_index.agents. | 123 |
| abstract_inverted_index.believe | 158 |
| abstract_inverted_index.broader | 172 |
| abstract_inverted_index.changes | 71 |
| abstract_inverted_index.failure | 131 |
| abstract_inverted_index.initial | 89 |
| abstract_inverted_index.propose | 55 |
| abstract_inverted_index.queries | 79 |
| abstract_inverted_index.reduced | 154 |
| abstract_inverted_index.remains | 30 |
| abstract_inverted_index.rewards | 23, 66, 118 |
| abstract_inverted_index.robotic | 25, 38 |
| abstract_inverted_index.subgoal | 112 |
| abstract_inverted_index.through | 67 |
| abstract_inverted_index.without | 27 |
| abstract_inverted_index.Bayesian | 101 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.accuracy | 152 |
| abstract_inverted_index.accurate | 22, 65 |
| abstract_inverted_index.achieves | 141 |
| abstract_inverted_index.advances | 1, 163 |
| abstract_inverted_index.approach | 125, 160 |
| abstract_inverted_index.datasets | 42 |
| abstract_inverted_index.embodied | 11, 175 |
| abstract_inverted_index.enhances | 126 |
| abstract_inverted_index.estimate | 91 |
| abstract_inverted_index.generate | 116 |
| abstract_inverted_index.improved | 8 |
| abstract_inverted_index.improves | 130 |
| abstract_inverted_index.indicate | 138 |
| abstract_inverted_index.learning | 121 |
| abstract_inverted_index.recovery | 132 |
| abstract_inverted_index.subgoals | 86 |
| abstract_inverted_index.superior | 150 |
| abstract_inverted_index.tracking | 68, 102 |
| abstract_inverted_index.website: | 178 |
| abstract_inverted_index.Extensive | 136 |
| abstract_inverted_index.algorithm | 103 |
| abstract_inverted_index.establish | 83 |
| abstract_inverted_index.framework | 62 |
| abstract_inverted_index.generates | 64 |
| abstract_inverted_index.knowledge | 39 |
| abstract_inverted_index.providing | 21 |
| abstract_inverted_index.real-time | 49 |
| abstract_inverted_index.spatially | 84 |
| abstract_inverted_index.subgoals. | 74 |
| abstract_inverted_index.completion | 90, 108 |
| abstract_inverted_index.consistent | 61 |
| abstract_inverted_index.generation | 165 |
| abstract_inverted_index.structured | 117 |
| abstract_inverted_index.techniques | 166 |
| abstract_inverted_index.temporally | 60 |
| abstract_inverted_index.VLM-derived | 73 |
| abstract_inverted_index.benchmarks, | 148 |
| abstract_inverted_index.challenging | 31 |
| abstract_inverted_index.computation | 155 |
| abstract_inverted_index.contributes | 169 |
| abstract_inverted_index.experiments | 137 |
| abstract_inverted_index.fine-tuning | 28 |
| abstract_inverted_index.performance | 9, 143 |
| abstract_inverted_index.pre-trained | 41 |
| abstract_inverted_index.capabilities | 133 |
| abstract_inverted_index.consumption. | 156 |
| abstract_inverted_index.dynamically, | 110 |
| abstract_inverted_index.interaction. | 96 |
| abstract_inverted_index.long-horizon | 127 |
| abstract_inverted_index.manipulation | 26, 147 |
| abstract_inverted_index.Specifically, | 75 |
| abstract_inverted_index.computational | 45 |
| abstract_inverted_index.decomposition | 16 |
| abstract_inverted_index.demonstrating | 149 |
| abstract_inverted_index.reinforcement | 120 |
| abstract_inverted_index.significantly | 7 |
| abstract_inverted_index.applicability. | 50 |
| abstract_inverted_index.comprehension. | 19 |
| abstract_inverted_index.training-free, | 59 |
| abstract_inverted_index.decision-making | 128 |
| abstract_inverted_index.domain-specific | 37 |
| abstract_inverted_index.vision-language | 3 |
| abstract_inverted_index.state-of-the-art | 142 |
| abstract_inverted_index.$\mathrm{T}^2$-VLM | 140 |
| abstract_inverted_index.$\mathrm{T}^2$-VLM, | 56 |
| abstract_inverted_index.https://t2-vlm.github.io/. | 179 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile.value | 0.22081816 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |