Trajectory growth lower bounds for random sparse deep ReLU networks Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/icmla52953.2021.00165
This paper considers the growth in the length of one-dimensional trajectories as they are passed through deep ReLU neural networks, which, among other things, is one measure of the expressivity of deep networks. We generalise existing results, providing an alternative, simpler method for lower bounding expected trajectory growth through random networks, for a more general class of weights distributions, including sparsely connected networks. We illustrate this approach by deriving bounds for sparse-Gaussian, sparse-uniform, and sparse-discrete-valued random nets. We prove that trajectory growth can remain exponential in depth with these new distributions, including their sparse variants, with the sparsity parameter appearing in the base of the exponent.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1109/icmla52953.2021.00165
- OA Status
- green
- Cited By
- 2
- References
- 31
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2990405359
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2990405359Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/icmla52953.2021.00165Digital Object Identifier
- Title
-
Trajectory growth lower bounds for random sparse deep ReLU networksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-01Full publication date if available
- Authors
-
Ilan Price, Jared TannerList of authors in order
- Landing page
-
https://doi.org/10.1109/icmla52953.2021.00165Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1911.10651Direct OA link when available
- Concepts
-
Bounding overwatch, Trajectory, Gaussian, Exponent, Computer science, Class (philosophy), Algorithm, Mathematics, Torus, Applied mathematics, Artificial intelligence, Geometry, Physics, Quantum mechanics, Astronomy, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2990405359 |
|---|---|
| doi | https://doi.org/10.1109/icmla52953.2021.00165 |
| ids.doi | https://doi.org/10.1109/icmla52953.2021.00165 |
| ids.mag | 2990405359 |
| ids.openalex | https://openalex.org/W2990405359 |
| fwci | 0.24523941 |
| type | preprint |
| title | Trajectory growth lower bounds for random sparse deep ReLU networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1009 |
| biblio.first_page | 1004 |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T12676 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and ELM |
| topics[2].id | https://openalex.org/T11612 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9972000122070312 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Stochastic Gradient Optimization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C63584917 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7349575757980347 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q333286 |
| concepts[0].display_name | Bounding overwatch |
| concepts[1].id | https://openalex.org/C13662910 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6597729921340942 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[1].display_name | Trajectory |
| concepts[2].id | https://openalex.org/C163716315 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6335760951042175 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[2].display_name | Gaussian |
| concepts[3].id | https://openalex.org/C2780388253 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5816001892089844 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5421508 |
| concepts[3].display_name | Exponent |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4963734745979309 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C2777212361 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44779184460639954 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[5].display_name | Class (philosophy) |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4461268484592438 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4239412248134613 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C9767117 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4187667965888977 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12510 |
| concepts[8].display_name | Torus |
| concepts[9].id | https://openalex.org/C28826006 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33814990520477295 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[9].display_name | Applied mathematics |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.29491037130355835 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C2524010 |
| concepts[11].level | 1 |
| concepts[11].score | 0.07525905966758728 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[11].display_name | Geometry |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.062428057193756104 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| concepts[14].id | https://openalex.org/C1276947 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[14].display_name | Astronomy |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/bounding-overwatch |
| keywords[0].score | 0.7349575757980347 |
| keywords[0].display_name | Bounding overwatch |
| keywords[1].id | https://openalex.org/keywords/trajectory |
| keywords[1].score | 0.6597729921340942 |
| keywords[1].display_name | Trajectory |
| keywords[2].id | https://openalex.org/keywords/gaussian |
| keywords[2].score | 0.6335760951042175 |
| keywords[2].display_name | Gaussian |
| keywords[3].id | https://openalex.org/keywords/exponent |
| keywords[3].score | 0.5816001892089844 |
| keywords[3].display_name | Exponent |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4963734745979309 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/class |
| keywords[5].score | 0.44779184460639954 |
| keywords[5].display_name | Class (philosophy) |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.4461268484592438 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.4239412248134613 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/torus |
| keywords[8].score | 0.4187667965888977 |
| keywords[8].display_name | Torus |
| keywords[9].id | https://openalex.org/keywords/applied-mathematics |
| keywords[9].score | 0.33814990520477295 |
| keywords[9].display_name | Applied mathematics |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.29491037130355835 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/geometry |
| keywords[11].score | 0.07525905966758728 |
| keywords[11].display_name | Geometry |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.062428057193756104 |
| keywords[12].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1109/icmla52953.2021.00165 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4363607906 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA) |
| locations[0].landing_page_url | https://doi.org/10.1109/icmla52953.2021.00165 |
| locations[1].id | pmh:oai:arXiv.org:1911.10651 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/1911.10651 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/1911.10651 |
| locations[2].id | mag:2990405359 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | https://arxiv.org/pdf/1911.10651.pdf |
| locations[3].id | doi:10.48550/arxiv.1911.10651 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.1911.10651 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5062089651 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6713-8413 |
| authorships[0].author.display_name | Ilan Price |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ilan Price |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5059562923 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5561-9949 |
| authorships[1].author.display_name | Jared Tanner |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Oxford. |
| authorships[1].institutions[0].id | https://openalex.org/I40120149 |
| authorships[1].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Oxford |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jared Tanner |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Oxford. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1911.10651 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Trajectory growth lower bounds for random sparse deep ReLU networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2751177214, https://openalex.org/W2964082600, https://openalex.org/W2128403879, https://openalex.org/W2963130948, https://openalex.org/W2097615037, https://openalex.org/W2886795866, https://openalex.org/W1989816336, https://openalex.org/W1751559330, https://openalex.org/W3121098844, https://openalex.org/W1555384764, https://openalex.org/W2483587347, https://openalex.org/W2964276604, https://openalex.org/W3094329447, https://openalex.org/W3093204380, https://openalex.org/W3108641328, https://openalex.org/W3091424143, https://openalex.org/W3033561460, https://openalex.org/W1817754535, https://openalex.org/W2951374343, https://openalex.org/W2950176714 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:1911.10651 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1911.10651 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1911.10651 |
| primary_location.id | doi:10.1109/icmla52953.2021.00165 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4363607906 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA) |
| primary_location.landing_page_url | https://doi.org/10.1109/icmla52953.2021.00165 |
| publication_date | 2021-12-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W6727208969, https://openalex.org/W6748319235, https://openalex.org/W6770812203, https://openalex.org/W2008882502, https://openalex.org/W6760581627, https://openalex.org/W6758495120, https://openalex.org/W6743958420, https://openalex.org/W6739513683, https://openalex.org/W2962761333, https://openalex.org/W6751979845, https://openalex.org/W6718212895, https://openalex.org/W6693397755, https://openalex.org/W1533861849, https://openalex.org/W2963813662, https://openalex.org/W2903807915, https://openalex.org/W2963097630, https://openalex.org/W3146803896, https://openalex.org/W2964164125, https://openalex.org/W2913356329, https://openalex.org/W2524428287, https://openalex.org/W2962963202, https://openalex.org/W2963674932, https://openalex.org/W2963516298, https://openalex.org/W2161388792, https://openalex.org/W2103496339, https://openalex.org/W2963982496, https://openalex.org/W2964088238, https://openalex.org/W2922783569, https://openalex.org/W3098332409, https://openalex.org/W2786112702, https://openalex.org/W2267635276 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 52 |
| abstract_inverted_index.We | 33, 63, 77 |
| abstract_inverted_index.an | 38 |
| abstract_inverted_index.as | 11 |
| abstract_inverted_index.by | 67 |
| abstract_inverted_index.in | 5, 85, 100 |
| abstract_inverted_index.is | 24 |
| abstract_inverted_index.of | 8, 27, 30, 56, 103 |
| abstract_inverted_index.and | 73 |
| abstract_inverted_index.are | 13 |
| abstract_inverted_index.can | 82 |
| abstract_inverted_index.for | 42, 51, 70 |
| abstract_inverted_index.new | 89 |
| abstract_inverted_index.one | 25 |
| abstract_inverted_index.the | 3, 6, 28, 96, 101, 104 |
| abstract_inverted_index.ReLU | 17 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.base | 102 |
| abstract_inverted_index.deep | 16, 31 |
| abstract_inverted_index.more | 53 |
| abstract_inverted_index.that | 79 |
| abstract_inverted_index.they | 12 |
| abstract_inverted_index.this | 65 |
| abstract_inverted_index.with | 87, 95 |
| abstract_inverted_index.among | 21 |
| abstract_inverted_index.class | 55 |
| abstract_inverted_index.depth | 86 |
| abstract_inverted_index.lower | 43 |
| abstract_inverted_index.nets. | 76 |
| abstract_inverted_index.other | 22 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.prove | 78 |
| abstract_inverted_index.their | 92 |
| abstract_inverted_index.these | 88 |
| abstract_inverted_index.bounds | 69 |
| abstract_inverted_index.growth | 4, 47, 81 |
| abstract_inverted_index.length | 7 |
| abstract_inverted_index.method | 41 |
| abstract_inverted_index.neural | 18 |
| abstract_inverted_index.passed | 14 |
| abstract_inverted_index.random | 49, 75 |
| abstract_inverted_index.remain | 83 |
| abstract_inverted_index.sparse | 93 |
| abstract_inverted_index.which, | 20 |
| abstract_inverted_index.general | 54 |
| abstract_inverted_index.measure | 26 |
| abstract_inverted_index.simpler | 40 |
| abstract_inverted_index.things, | 23 |
| abstract_inverted_index.through | 15, 48 |
| abstract_inverted_index.weights | 57 |
| abstract_inverted_index.approach | 66 |
| abstract_inverted_index.bounding | 44 |
| abstract_inverted_index.deriving | 68 |
| abstract_inverted_index.existing | 35 |
| abstract_inverted_index.expected | 45 |
| abstract_inverted_index.results, | 36 |
| abstract_inverted_index.sparsely | 60 |
| abstract_inverted_index.sparsity | 97 |
| abstract_inverted_index.appearing | 99 |
| abstract_inverted_index.connected | 61 |
| abstract_inverted_index.considers | 2 |
| abstract_inverted_index.exponent. | 105 |
| abstract_inverted_index.including | 59, 91 |
| abstract_inverted_index.networks, | 19, 50 |
| abstract_inverted_index.networks. | 32, 62 |
| abstract_inverted_index.parameter | 98 |
| abstract_inverted_index.providing | 37 |
| abstract_inverted_index.variants, | 94 |
| abstract_inverted_index.generalise | 34 |
| abstract_inverted_index.illustrate | 64 |
| abstract_inverted_index.trajectory | 46, 80 |
| abstract_inverted_index.exponential | 84 |
| abstract_inverted_index.alternative, | 39 |
| abstract_inverted_index.expressivity | 29 |
| abstract_inverted_index.trajectories | 10 |
| abstract_inverted_index.distributions, | 58, 90 |
| abstract_inverted_index.one-dimensional | 9 |
| abstract_inverted_index.sparse-uniform, | 72 |
| abstract_inverted_index.sparse-Gaussian, | 71 |
| abstract_inverted_index.sparse-discrete-valued | 74 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.45161892 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |