Trajectory Tracking of Open-pit Mining Trucks based on MPC and Pure Pursuit Control Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.54097/25t7cc72
Regarding the trajectory tracking problem of mine trucks in intelligent mining environments, This paper presents a Integrated trajectory tracking approach based on Model Predictive Control (MPC) and Pure Pursuit control. This approach is primarily driven by the Model Predictive Control (MPC) controller, The lateral trajectory error is derived through the Pure Pursuit (PP) control algorithm, The vehicle steering angle control input is generated using a weighted hybrid control approach, To address the trajectory tracking challenge of open-pit mine trucks in dynamic and complex environments. Finally, through simulations using CarSim and Matlab/Simulink, the performance of the mine truck in tracking a dual-shift trajectory was evaluated. The results indicate that, compared to the standalone MPC controller, the integrated control method demonstrates a significant improvement in tracking accuracy.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.54097/25t7cc72
- https://drpress.org/ojs/index.php/fcis/article/download/32179/31500
- OA Status
- diamond
- OpenAlex ID
- https://openalex.org/W4415755886
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415755886Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.54097/25t7cc72Digital Object Identifier
- Title
-
Trajectory Tracking of Open-pit Mining Trucks based on MPC and Pure Pursuit ControlWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-31Full publication date if available
- Authors
-
Qingfu Zhang, Yunsen Wang, Jianming Zheng, Li Zhao, Hao LiList of authors in order
- Landing page
-
https://doi.org/10.54097/25t7cc72Publisher landing page
- PDF URL
-
https://drpress.org/ojs/index.php/fcis/article/download/32179/31500Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://drpress.org/ojs/index.php/fcis/article/download/32179/31500Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415755886 |
|---|---|
| doi | https://doi.org/10.54097/25t7cc72 |
| ids.doi | https://doi.org/10.54097/25t7cc72 |
| ids.openalex | https://openalex.org/W4415755886 |
| fwci | |
| type | article |
| title | Trajectory Tracking of Open-pit Mining Trucks based on MPC and Pure Pursuit Control |
| biblio.issue | 1 |
| biblio.volume | 14 |
| biblio.last_page | 83 |
| biblio.first_page | 77 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.54097/25t7cc72 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387283309 |
| locations[0].source.issn | 2832-6024 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2832-6024 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Frontiers in Computing and Intelligent Systems |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://drpress.org/ojs/index.php/fcis/article/download/32179/31500 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Computing and Intelligent Systems |
| locations[0].landing_page_url | https://doi.org/10.54097/25t7cc72 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5037254400 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5788-7023 |
| authorships[0].author.display_name | Qingfu Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qingfu Zhang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101422449 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6613-4579 |
| authorships[1].author.display_name | Yunsen Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yunsen Wang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5023144456 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4928-8194 |
| authorships[2].author.display_name | Jianming Zheng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jianming Zheng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5110944326 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Li Zhao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhao Li |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100348681 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2179-1836 |
| authorships[4].author.display_name | Hao Li |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Hao Li |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://drpress.org/ojs/index.php/fcis/article/download/32179/31500 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-01T00:00:00 |
| display_name | Trajectory Tracking of Open-pit Mining Trucks based on MPC and Pure Pursuit Control |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.54097/25t7cc72 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387283309 |
| best_oa_location.source.issn | 2832-6024 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2832-6024 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Frontiers in Computing and Intelligent Systems |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://drpress.org/ojs/index.php/fcis/article/download/32179/31500 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Computing and Intelligent Systems |
| best_oa_location.landing_page_url | https://doi.org/10.54097/25t7cc72 |
| primary_location.id | doi:10.54097/25t7cc72 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387283309 |
| primary_location.source.issn | 2832-6024 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2832-6024 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Frontiers in Computing and Intelligent Systems |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://drpress.org/ojs/index.php/fcis/article/download/32179/31500 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Computing and Intelligent Systems |
| primary_location.landing_page_url | https://doi.org/10.54097/25t7cc72 |
| publication_date | 2025-10-31 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 15, 64, 99, 119 |
| abstract_inverted_index.To | 69 |
| abstract_inverted_index.by | 35 |
| abstract_inverted_index.in | 8, 79, 97, 122 |
| abstract_inverted_index.is | 32, 46, 61 |
| abstract_inverted_index.of | 5, 75, 93 |
| abstract_inverted_index.on | 21 |
| abstract_inverted_index.to | 109 |
| abstract_inverted_index.MPC | 112 |
| abstract_inverted_index.The | 42, 55, 104 |
| abstract_inverted_index.and | 26, 81, 89 |
| abstract_inverted_index.the | 1, 36, 49, 71, 91, 94, 110, 114 |
| abstract_inverted_index.was | 102 |
| abstract_inverted_index.(PP) | 52 |
| abstract_inverted_index.Pure | 27, 50 |
| abstract_inverted_index.This | 12, 30 |
| abstract_inverted_index.mine | 6, 77, 95 |
| abstract_inverted_index.(MPC) | 25, 40 |
| abstract_inverted_index.Model | 22, 37 |
| abstract_inverted_index.angle | 58 |
| abstract_inverted_index.based | 20 |
| abstract_inverted_index.error | 45 |
| abstract_inverted_index.input | 60 |
| abstract_inverted_index.paper | 13 |
| abstract_inverted_index.that, | 107 |
| abstract_inverted_index.truck | 96 |
| abstract_inverted_index.using | 63, 87 |
| abstract_inverted_index.CarSim | 88 |
| abstract_inverted_index.driven | 34 |
| abstract_inverted_index.hybrid | 66 |
| abstract_inverted_index.method | 117 |
| abstract_inverted_index.mining | 10 |
| abstract_inverted_index.trucks | 7, 78 |
| abstract_inverted_index.Control | 24, 39 |
| abstract_inverted_index.Pursuit | 28, 51 |
| abstract_inverted_index.address | 70 |
| abstract_inverted_index.complex | 82 |
| abstract_inverted_index.control | 53, 59, 67, 116 |
| abstract_inverted_index.derived | 47 |
| abstract_inverted_index.dynamic | 80 |
| abstract_inverted_index.lateral | 43 |
| abstract_inverted_index.problem | 4 |
| abstract_inverted_index.results | 105 |
| abstract_inverted_index.through | 48, 85 |
| abstract_inverted_index.vehicle | 56 |
| abstract_inverted_index.Finally, | 84 |
| abstract_inverted_index.approach | 19, 31 |
| abstract_inverted_index.compared | 108 |
| abstract_inverted_index.control. | 29 |
| abstract_inverted_index.indicate | 106 |
| abstract_inverted_index.open-pit | 76 |
| abstract_inverted_index.presents | 14 |
| abstract_inverted_index.steering | 57 |
| abstract_inverted_index.tracking | 3, 18, 73, 98, 123 |
| abstract_inverted_index.weighted | 65 |
| abstract_inverted_index.Regarding | 0 |
| abstract_inverted_index.accuracy. | 124 |
| abstract_inverted_index.approach, | 68 |
| abstract_inverted_index.challenge | 74 |
| abstract_inverted_index.generated | 62 |
| abstract_inverted_index.primarily | 33 |
| abstract_inverted_index.Integrated | 16 |
| abstract_inverted_index.Predictive | 23, 38 |
| abstract_inverted_index.algorithm, | 54 |
| abstract_inverted_index.dual-shift | 100 |
| abstract_inverted_index.evaluated. | 103 |
| abstract_inverted_index.integrated | 115 |
| abstract_inverted_index.standalone | 111 |
| abstract_inverted_index.trajectory | 2, 17, 44, 72, 101 |
| abstract_inverted_index.controller, | 41, 113 |
| abstract_inverted_index.improvement | 121 |
| abstract_inverted_index.intelligent | 9 |
| abstract_inverted_index.performance | 92 |
| abstract_inverted_index.significant | 120 |
| abstract_inverted_index.simulations | 86 |
| abstract_inverted_index.demonstrates | 118 |
| abstract_inverted_index.environments, | 11 |
| abstract_inverted_index.environments. | 83 |
| abstract_inverted_index.Matlab/Simulink, | 90 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |