Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19 Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1101/2020.10.23.352666
The novel SARS-CoV-2 virus emerged in December 2019 and has few effective treatments. We applied a computational drug repositioning pipeline to SARS-CoV-2 differential gene expression signatures derived from publicly available data. We utilized three independent published studies to acquire or generate lists of differentially expressed genes between control and SARS-CoV-2-infected samples. Using a rank-based pattern matching strategy based on the Kolmogorov-Smirnov Statistic, the signatures were queried against drug profiles from Connectivity Map (CMap). We validated sixteen of our top predicted hits in live SARS-CoV-2 antiviral assays in either Calu-3 or 293T-ACE2 cells. Validation experiments in human cell lines showed that 11 of the 16 compounds tested to date (including clofazimine, haloperidol and others) had measurable antiviral activity against SARS-CoV-2. These initial results are encouraging as we continue to work towards a further analysis of these predicted drugs as potential therapeutics for the treatment of COVID-19.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2020.10.23.352666
- https://www.biorxiv.org/content/biorxiv/early/2020/10/23/2020.10.23.352666.full.pdf
- OA Status
- green
- Cited By
- 7
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3093512696
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3093512696Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2020.10.23.352666Digital Object Identifier
- Title
-
Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-10-23Full publication date if available
- Authors
-
Brian L. Le, Gaia Andreoletti, Tomiko Oskotsky, Albert Vallejo-Gracia, Romel Rosales, Katharine Yu, Idit Kosti, Kristoffer E. Leon, Daniel Bunis, Christine Li, G. Renuka Kumar, Kris M. White, Adolfo Garcı́a-Sastre, Mélanie Ott, Marina SirotaList of authors in order
- Landing page
-
https://doi.org/10.1101/2020.10.23.352666Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2020/10/23/2020.10.23.352666.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2020/10/23/2020.10.23.352666.full.pdfDirect OA link when available
- Concepts
-
Drug repositioning, Clofazimine, Computational biology, Coronavirus disease 2019 (COVID-19), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Pipeline (software), Transcriptome, Drug, Biology, Bioinformatics, Gene, Computer science, Medicine, Gene expression, Pharmacology, Genetics, Immunology, Pathology, Disease, Infectious disease (medical specialty), Programming language, LeprosyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2023: 1, 2022: 2, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3093512696 |
|---|---|
| doi | https://doi.org/10.1101/2020.10.23.352666 |
| ids.doi | https://doi.org/10.1101/2020.10.23.352666 |
| ids.mag | 3093512696 |
| ids.openalex | https://openalex.org/W3093512696 |
| fwci | 0.14343443 |
| type | preprint |
| title | Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19 |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10118 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2725 |
| topics[0].subfield.display_name | Infectious Diseases |
| topics[0].display_name | SARS-CoV-2 and COVID-19 Research |
| topics[1].id | https://openalex.org/T10211 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Computational Drug Discovery Methods |
| topics[2].id | https://openalex.org/T10041 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9957000017166138 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2725 |
| topics[2].subfield.display_name | Infectious Diseases |
| topics[2].display_name | COVID-19 Clinical Research Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C103637391 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8079636096954346 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5308921 |
| concepts[0].display_name | Drug repositioning |
| concepts[1].id | https://openalex.org/C2776297342 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7439008951187134 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q418611 |
| concepts[1].display_name | Clofazimine |
| concepts[2].id | https://openalex.org/C70721500 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6071321368217468 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[2].display_name | Computational biology |
| concepts[3].id | https://openalex.org/C3008058167 |
| concepts[3].level | 4 |
| concepts[3].score | 0.6041658520698547 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[3].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[4].id | https://openalex.org/C3007834351 |
| concepts[4].level | 5 |
| concepts[4].score | 0.5924229621887207 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q82069695 |
| concepts[4].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| concepts[5].id | https://openalex.org/C43521106 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48529237508773804 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[5].display_name | Pipeline (software) |
| concepts[6].id | https://openalex.org/C162317418 |
| concepts[6].level | 4 |
| concepts[6].score | 0.4660227298736572 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q252857 |
| concepts[6].display_name | Transcriptome |
| concepts[7].id | https://openalex.org/C2780035454 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46345657110214233 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8386 |
| concepts[7].display_name | Drug |
| concepts[8].id | https://openalex.org/C86803240 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3924430310726166 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[8].display_name | Biology |
| concepts[9].id | https://openalex.org/C60644358 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3315843939781189 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[9].display_name | Bioinformatics |
| concepts[10].id | https://openalex.org/C104317684 |
| concepts[10].level | 2 |
| concepts[10].score | 0.32135623693466187 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[10].display_name | Gene |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3103924095630646 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C71924100 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2735861539840698 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[12].display_name | Medicine |
| concepts[13].id | https://openalex.org/C150194340 |
| concepts[13].level | 3 |
| concepts[13].score | 0.22514167428016663 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q26972 |
| concepts[13].display_name | Gene expression |
| concepts[14].id | https://openalex.org/C98274493 |
| concepts[14].level | 1 |
| concepts[14].score | 0.21985870599746704 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q128406 |
| concepts[14].display_name | Pharmacology |
| concepts[15].id | https://openalex.org/C54355233 |
| concepts[15].level | 1 |
| concepts[15].score | 0.17361950874328613 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[15].display_name | Genetics |
| concepts[16].id | https://openalex.org/C203014093 |
| concepts[16].level | 1 |
| concepts[16].score | 0.10226914286613464 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q101929 |
| concepts[16].display_name | Immunology |
| concepts[17].id | https://openalex.org/C142724271 |
| concepts[17].level | 1 |
| concepts[17].score | 0.07474163174629211 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[17].display_name | Pathology |
| concepts[18].id | https://openalex.org/C2779134260 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[18].display_name | Disease |
| concepts[19].id | https://openalex.org/C524204448 |
| concepts[19].level | 3 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[19].display_name | Infectious disease (medical specialty) |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| concepts[21].id | https://openalex.org/C2780695269 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q36956 |
| concepts[21].display_name | Leprosy |
| keywords[0].id | https://openalex.org/keywords/drug-repositioning |
| keywords[0].score | 0.8079636096954346 |
| keywords[0].display_name | Drug repositioning |
| keywords[1].id | https://openalex.org/keywords/clofazimine |
| keywords[1].score | 0.7439008951187134 |
| keywords[1].display_name | Clofazimine |
| keywords[2].id | https://openalex.org/keywords/computational-biology |
| keywords[2].score | 0.6071321368217468 |
| keywords[2].display_name | Computational biology |
| keywords[3].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[3].score | 0.6041658520698547 |
| keywords[3].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[4].id | https://openalex.org/keywords/severe-acute-respiratory-syndrome-coronavirus-2 |
| keywords[4].score | 0.5924229621887207 |
| keywords[4].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| keywords[5].id | https://openalex.org/keywords/pipeline |
| keywords[5].score | 0.48529237508773804 |
| keywords[5].display_name | Pipeline (software) |
| keywords[6].id | https://openalex.org/keywords/transcriptome |
| keywords[6].score | 0.4660227298736572 |
| keywords[6].display_name | Transcriptome |
| keywords[7].id | https://openalex.org/keywords/drug |
| keywords[7].score | 0.46345657110214233 |
| keywords[7].display_name | Drug |
| keywords[8].id | https://openalex.org/keywords/biology |
| keywords[8].score | 0.3924430310726166 |
| keywords[8].display_name | Biology |
| keywords[9].id | https://openalex.org/keywords/bioinformatics |
| keywords[9].score | 0.3315843939781189 |
| keywords[9].display_name | Bioinformatics |
| keywords[10].id | https://openalex.org/keywords/gene |
| keywords[10].score | 0.32135623693466187 |
| keywords[10].display_name | Gene |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.3103924095630646 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/medicine |
| keywords[12].score | 0.2735861539840698 |
| keywords[12].display_name | Medicine |
| keywords[13].id | https://openalex.org/keywords/gene-expression |
| keywords[13].score | 0.22514167428016663 |
| keywords[13].display_name | Gene expression |
| keywords[14].id | https://openalex.org/keywords/pharmacology |
| keywords[14].score | 0.21985870599746704 |
| keywords[14].display_name | Pharmacology |
| keywords[15].id | https://openalex.org/keywords/genetics |
| keywords[15].score | 0.17361950874328613 |
| keywords[15].display_name | Genetics |
| keywords[16].id | https://openalex.org/keywords/immunology |
| keywords[16].score | 0.10226914286613464 |
| keywords[16].display_name | Immunology |
| keywords[17].id | https://openalex.org/keywords/pathology |
| keywords[17].score | 0.07474163174629211 |
| keywords[17].display_name | Pathology |
| language | en |
| locations[0].id | doi:10.1101/2020.10.23.352666 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2020/10/23/2020.10.23.352666.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2020.10.23.352666 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5024525830 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-4062-094X |
| authorships[0].author.display_name | Brian L. Le |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Pediatrics, UCSF, SF, CA, USA |
| authorships[0].affiliations[1].raw_affiliation_string | Bakar Computational Health Sciences Institute, UCSF, SF, CA, USA |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Brian L. Le |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Bakar Computational Health Sciences Institute, UCSF, SF, CA, USA, Department of Pediatrics, UCSF, SF, CA, USA |
| authorships[1].author.id | https://openalex.org/A5091641624 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0452-0009 |
| authorships[1].author.display_name | Gaia Andreoletti |
| authorships[1].affiliations[0].raw_affiliation_string | Bakar Computational Health Sciences Institute, UCSF, SF, CA, USA |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Pediatrics, UCSF, SF, CA, USA |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gaia Andreoletti |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Bakar Computational Health Sciences Institute, UCSF, SF, CA, USA, Department of Pediatrics, UCSF, SF, CA, USA |
| authorships[2].author.id | https://openalex.org/A5030459567 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7393-5120 |
| authorships[2].author.display_name | Tomiko Oskotsky |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Pediatrics, UCSF, SF, CA, USA |
| authorships[2].affiliations[1].raw_affiliation_string | Bakar Computational Health Sciences Institute, UCSF, SF, CA, USA |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tomiko Oskotsky |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Bakar Computational Health Sciences Institute, UCSF, SF, CA, USA, Department of Pediatrics, UCSF, SF, CA, USA |
| authorships[3].author.id | https://openalex.org/A5002353515 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4815-5039 |
| authorships[3].author.display_name | Albert Vallejo-Gracia |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1321430492 |
| authorships[3].affiliations[0].raw_affiliation_string | Gladstone Institute of Virology, Gladstone Institutes, SF, CA, USA |
| authorships[3].institutions[0].id | https://openalex.org/I1321430492 |
| authorships[3].institutions[0].ror | https://ror.org/038321296 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I1321430492 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Gladstone Institutes |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Albert Vallejo-Gracia |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Gladstone Institute of Virology, Gladstone Institutes, SF, CA, USA |
| authorships[4].author.id | https://openalex.org/A5056558213 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5326-4753 |
| authorships[4].author.display_name | Romel Rosales |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[4].affiliations[0].raw_affiliation_string | Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA |
| authorships[4].institutions[0].id | https://openalex.org/I98704320 |
| authorships[4].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Romel Rosales |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA |
| authorships[5].author.id | https://openalex.org/A5079896839 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8310-8815 |
| authorships[5].author.display_name | Katharine Yu |
| authorships[5].affiliations[0].raw_affiliation_string | Bakar Computational Health Sciences Institute, UCSF, SF, CA, USA |
| authorships[5].affiliations[1].raw_affiliation_string | Department of Pediatrics, UCSF, SF, CA, USA |
| authorships[5].affiliations[2].raw_affiliation_string | Biomedical Sciences Graduate Program, UCSF, SF, CA, USA |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Katharine Yu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Bakar Computational Health Sciences Institute, UCSF, SF, CA, USA, Biomedical Sciences Graduate Program, UCSF, SF, CA, USA, Department of Pediatrics, UCSF, SF, CA, USA |
| authorships[6].author.id | https://openalex.org/A5068778085 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2212-5472 |
| authorships[6].author.display_name | Idit Kosti |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Pediatrics, UCSF, SF, CA, USA |
| authorships[6].affiliations[1].raw_affiliation_string | Bakar Computational Health Sciences Institute, UCSF, SF, CA, USA |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Idit Kosti |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Bakar Computational Health Sciences Institute, UCSF, SF, CA, USA, Department of Pediatrics, UCSF, SF, CA, USA |
| authorships[7].author.id | https://openalex.org/A5018681389 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-2424-0458 |
| authorships[7].author.display_name | Kristoffer E. Leon |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I1321430492 |
| authorships[7].affiliations[0].raw_affiliation_string | Gladstone Institute of Virology, Gladstone Institutes, SF, CA, USA |
| authorships[7].institutions[0].id | https://openalex.org/I1321430492 |
| authorships[7].institutions[0].ror | https://ror.org/038321296 |
| authorships[7].institutions[0].type | nonprofit |
| authorships[7].institutions[0].lineage | https://openalex.org/I1321430492 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Gladstone Institutes |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Kristoffer E. Leon |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Gladstone Institute of Virology, Gladstone Institutes, SF, CA, USA |
| authorships[8].author.id | https://openalex.org/A5067222456 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-0010-1616 |
| authorships[8].author.display_name | Daniel Bunis |
| authorships[8].affiliations[0].raw_affiliation_string | Biomedical Sciences Graduate Program, UCSF, SF, CA, USA |
| authorships[8].affiliations[1].raw_affiliation_string | Department of Pediatrics, UCSF, SF, CA, USA |
| authorships[8].affiliations[2].raw_affiliation_string | Bakar Computational Health Sciences Institute, UCSF, SF, CA, USA |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Daniel G. Bunis |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Bakar Computational Health Sciences Institute, UCSF, SF, CA, USA, Biomedical Sciences Graduate Program, UCSF, SF, CA, USA, Department of Pediatrics, UCSF, SF, CA, USA |
| authorships[9].author.id | https://openalex.org/A5102026512 |
| authorships[9].author.orcid | https://orcid.org/0009-0007-7360-5958 |
| authorships[9].author.display_name | Christine Li |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].raw_affiliation_string | Bakar Computational Health Sciences Institute, UCSF, SF, CA, USA |
| authorships[9].affiliations[1].raw_affiliation_string | Department of Pediatrics, UCSF, SF, CA, USA |
| authorships[9].affiliations[2].institution_ids | https://openalex.org/I3132425485 |
| authorships[9].affiliations[2].raw_affiliation_string | Shanghai American School, Shanghai, China |
| authorships[9].institutions[0].id | https://openalex.org/I3132425485 |
| authorships[9].institutions[0].ror | https://ror.org/03xzda142 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I3132425485 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Shanghai American School |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Christine Li |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Bakar Computational Health Sciences Institute, UCSF, SF, CA, USA, Department of Pediatrics, UCSF, SF, CA, USA, Shanghai American School, Shanghai, China |
| authorships[10].author.id | https://openalex.org/A5079789821 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-6090-3285 |
| authorships[10].author.display_name | G. Renuka Kumar |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I1321430492 |
| authorships[10].affiliations[0].raw_affiliation_string | Gladstone Institute of Virology, Gladstone Institutes, SF, CA, USA |
| authorships[10].institutions[0].id | https://openalex.org/I1321430492 |
| authorships[10].institutions[0].ror | https://ror.org/038321296 |
| authorships[10].institutions[0].type | nonprofit |
| authorships[10].institutions[0].lineage | https://openalex.org/I1321430492 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | Gladstone Institutes |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | G. Renuka Kumar |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Gladstone Institute of Virology, Gladstone Institutes, SF, CA, USA |
| authorships[11].author.id | https://openalex.org/A5041400773 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-0889-0506 |
| authorships[11].author.display_name | Kris M. White |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[11].affiliations[0].raw_affiliation_string | Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA |
| authorships[11].institutions[0].id | https://openalex.org/I98704320 |
| authorships[11].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Kris M. White |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA |
| authorships[12].author.id | https://openalex.org/A5004889712 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-6551-1827 |
| authorships[12].author.display_name | Adolfo Garcı́a-Sastre |
| authorships[12].countries | US |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[12].affiliations[0].raw_affiliation_string | Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA |
| authorships[12].institutions[0].id | https://openalex.org/I98704320 |
| authorships[12].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[12].institutions[0].type | education |
| authorships[12].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[12].institutions[0].country_code | US |
| authorships[12].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Adolfo García-Sastre |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA |
| authorships[13].author.id | https://openalex.org/A5068579765 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-5697-1274 |
| authorships[13].author.display_name | Mélanie Ott |
| authorships[13].countries | US |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I1321430492 |
| authorships[13].affiliations[0].raw_affiliation_string | Gladstone Institute of Virology, Gladstone Institutes, SF, CA, USA |
| authorships[13].affiliations[1].raw_affiliation_string | Department of Medicine, UCSF, SF, CA, USA |
| authorships[13].institutions[0].id | https://openalex.org/I1321430492 |
| authorships[13].institutions[0].ror | https://ror.org/038321296 |
| authorships[13].institutions[0].type | nonprofit |
| authorships[13].institutions[0].lineage | https://openalex.org/I1321430492 |
| authorships[13].institutions[0].country_code | US |
| authorships[13].institutions[0].display_name | Gladstone Institutes |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Melanie Ott |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Department of Medicine, UCSF, SF, CA, USA, Gladstone Institute of Virology, Gladstone Institutes, SF, CA, USA |
| authorships[14].author.id | https://openalex.org/A5086033147 |
| authorships[14].author.orcid | https://orcid.org/0000-0002-7246-6083 |
| authorships[14].author.display_name | Marina Sirota |
| authorships[14].affiliations[0].raw_affiliation_string | Department of Pediatrics, UCSF, SF, CA, USA |
| authorships[14].affiliations[1].raw_affiliation_string | Bakar Computational Health Sciences Institute, UCSF, SF, CA, USA |
| authorships[14].author_position | last |
| authorships[14].raw_author_name | Marina Sirota |
| authorships[14].is_corresponding | True |
| authorships[14].raw_affiliation_strings | Bakar Computational Health Sciences Institute, UCSF, SF, CA, USA, Department of Pediatrics, UCSF, SF, CA, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2020/10/23/2020.10.23.352666.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19 |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10118 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2725 |
| primary_topic.subfield.display_name | Infectious Diseases |
| primary_topic.display_name | SARS-CoV-2 and COVID-19 Research |
| related_works | https://openalex.org/W4252107298, https://openalex.org/W2033706990, https://openalex.org/W2041168948, https://openalex.org/W2071711748, https://openalex.org/W2291779966, https://openalex.org/W1982529813, https://openalex.org/W2095696514, https://openalex.org/W202380478, https://openalex.org/W2048203385, https://openalex.org/W4211076194 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2020.10.23.352666 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2020/10/23/2020.10.23.352666.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2020.10.23.352666 |
| primary_location.id | doi:10.1101/2020.10.23.352666 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2020/10/23/2020.10.23.352666.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2020.10.23.352666 |
| publication_date | 2020-10-23 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W3084246468, https://openalex.org/W3040801404, https://openalex.org/W3087862874, https://openalex.org/W3012421327, https://openalex.org/W3035963943, https://openalex.org/W3014705243, https://openalex.org/W6996256334, https://openalex.org/W4205309733, https://openalex.org/W3042270788, https://openalex.org/W2121175754, https://openalex.org/W2037022423, https://openalex.org/W3022285953, https://openalex.org/W3011072970, https://openalex.org/W3093213262, https://openalex.org/W3015741518, https://openalex.org/W2137632714, https://openalex.org/W2128054164, https://openalex.org/W2295019682, https://openalex.org/W2591862054, https://openalex.org/W2734505834, https://openalex.org/W2097834966, https://openalex.org/W3005892426, https://openalex.org/W3015956745, https://openalex.org/W3016489853, https://openalex.org/W3009912996, https://openalex.org/W3020909574, https://openalex.org/W3013843138, https://openalex.org/W2121604817, https://openalex.org/W2130410032, https://openalex.org/W2123106337, https://openalex.org/W3024643080, https://openalex.org/W2767891136, https://openalex.org/W2162011385, https://openalex.org/W3037085972, https://openalex.org/W2022725791, https://openalex.org/W2125159822, https://openalex.org/W3092134734, https://openalex.org/W2949311246, https://openalex.org/W2612467560, https://openalex.org/W2047017978, https://openalex.org/W3048424965, https://openalex.org/W2983817879, https://openalex.org/W2583735774, https://openalex.org/W2010457001, https://openalex.org/W4249273120, https://openalex.org/W2997280954, https://openalex.org/W3099354057, https://openalex.org/W2107580398, https://openalex.org/W944853120, https://openalex.org/W3027630905, https://openalex.org/W2123012614, https://openalex.org/W4210642183, https://openalex.org/W2735342125, https://openalex.org/W1994695979, https://openalex.org/W2122683221 |
| referenced_works_count | 55 |
| abstract_inverted_index.a | 16, 53, 131 |
| abstract_inverted_index.11 | 101 |
| abstract_inverted_index.16 | 104 |
| abstract_inverted_index.We | 14, 32, 74 |
| abstract_inverted_index.as | 125, 138 |
| abstract_inverted_index.in | 6, 82, 87, 95 |
| abstract_inverted_index.of | 43, 77, 102, 134, 144 |
| abstract_inverted_index.on | 59 |
| abstract_inverted_index.or | 40, 90 |
| abstract_inverted_index.to | 21, 38, 107, 128 |
| abstract_inverted_index.we | 126 |
| abstract_inverted_index.Map | 72 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 9, 49, 112 |
| abstract_inverted_index.are | 123 |
| abstract_inverted_index.few | 11 |
| abstract_inverted_index.for | 141 |
| abstract_inverted_index.had | 114 |
| abstract_inverted_index.has | 10 |
| abstract_inverted_index.our | 78 |
| abstract_inverted_index.the | 60, 63, 103, 142 |
| abstract_inverted_index.top | 79 |
| abstract_inverted_index.2019 | 8 |
| abstract_inverted_index.cell | 97 |
| abstract_inverted_index.date | 108 |
| abstract_inverted_index.drug | 18, 68 |
| abstract_inverted_index.from | 28, 70 |
| abstract_inverted_index.gene | 24 |
| abstract_inverted_index.hits | 81 |
| abstract_inverted_index.live | 83 |
| abstract_inverted_index.that | 100 |
| abstract_inverted_index.were | 65 |
| abstract_inverted_index.work | 129 |
| abstract_inverted_index.These | 120 |
| abstract_inverted_index.Using | 52 |
| abstract_inverted_index.based | 58 |
| abstract_inverted_index.data. | 31 |
| abstract_inverted_index.drugs | 137 |
| abstract_inverted_index.genes | 46 |
| abstract_inverted_index.human | 96 |
| abstract_inverted_index.lines | 98 |
| abstract_inverted_index.lists | 42 |
| abstract_inverted_index.novel | 2 |
| abstract_inverted_index.these | 135 |
| abstract_inverted_index.three | 34 |
| abstract_inverted_index.virus | 4 |
| abstract_inverted_index.Calu-3 | 89 |
| abstract_inverted_index.assays | 86 |
| abstract_inverted_index.cells. | 92 |
| abstract_inverted_index.either | 88 |
| abstract_inverted_index.showed | 99 |
| abstract_inverted_index.tested | 106 |
| abstract_inverted_index.(CMap). | 73 |
| abstract_inverted_index.acquire | 39 |
| abstract_inverted_index.against | 67, 118 |
| abstract_inverted_index.applied | 15 |
| abstract_inverted_index.between | 47 |
| abstract_inverted_index.control | 48 |
| abstract_inverted_index.derived | 27 |
| abstract_inverted_index.emerged | 5 |
| abstract_inverted_index.further | 132 |
| abstract_inverted_index.initial | 121 |
| abstract_inverted_index.others) | 113 |
| abstract_inverted_index.pattern | 55 |
| abstract_inverted_index.queried | 66 |
| abstract_inverted_index.results | 122 |
| abstract_inverted_index.sixteen | 76 |
| abstract_inverted_index.studies | 37 |
| abstract_inverted_index.towards | 130 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.December | 7 |
| abstract_inverted_index.activity | 117 |
| abstract_inverted_index.analysis | 133 |
| abstract_inverted_index.continue | 127 |
| abstract_inverted_index.generate | 41 |
| abstract_inverted_index.matching | 56 |
| abstract_inverted_index.pipeline | 20 |
| abstract_inverted_index.profiles | 69 |
| abstract_inverted_index.publicly | 29 |
| abstract_inverted_index.samples. | 51 |
| abstract_inverted_index.strategy | 57 |
| abstract_inverted_index.utilized | 33 |
| abstract_inverted_index.293T-ACE2 | 91 |
| abstract_inverted_index.COVID-19. | 145 |
| abstract_inverted_index.antiviral | 85, 116 |
| abstract_inverted_index.available | 30 |
| abstract_inverted_index.compounds | 105 |
| abstract_inverted_index.effective | 12 |
| abstract_inverted_index.expressed | 45 |
| abstract_inverted_index.potential | 139 |
| abstract_inverted_index.predicted | 80, 136 |
| abstract_inverted_index.published | 36 |
| abstract_inverted_index.treatment | 143 |
| abstract_inverted_index.validated | 75 |
| abstract_inverted_index.(including | 109 |
| abstract_inverted_index.SARS-CoV-2 | 3, 22, 84 |
| abstract_inverted_index.Statistic, | 62 |
| abstract_inverted_index.Validation | 93 |
| abstract_inverted_index.expression | 25 |
| abstract_inverted_index.measurable | 115 |
| abstract_inverted_index.rank-based | 54 |
| abstract_inverted_index.signatures | 26, 64 |
| abstract_inverted_index.SARS-CoV-2. | 119 |
| abstract_inverted_index.encouraging | 124 |
| abstract_inverted_index.experiments | 94 |
| abstract_inverted_index.haloperidol | 111 |
| abstract_inverted_index.independent | 35 |
| abstract_inverted_index.treatments. | 13 |
| abstract_inverted_index.Connectivity | 71 |
| abstract_inverted_index.clofazimine, | 110 |
| abstract_inverted_index.differential | 23 |
| abstract_inverted_index.therapeutics | 140 |
| abstract_inverted_index.computational | 17 |
| abstract_inverted_index.repositioning | 19 |
| abstract_inverted_index.differentially | 44 |
| abstract_inverted_index.Kolmogorov-Smirnov | 61 |
| abstract_inverted_index.SARS-CoV-2-infected | 50 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5086033147 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 15 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.58018247 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |