Transfer learning-based soybean LAI estimations by integrating PROSAIL, UAV, and PlanetScope imagery Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.aiia.2025.10.018
Accurate Leaf Area Index (LAI) estimations at the soybean plot scale is achievable using high-resolution Unmanned Aerial Vehicle (UAV) imagery and field measurement samples. However, the limited coverage of UAV flights restricts large-scale remote sensing monitoring in expansive soybean fields. This study leverages the broad coverage and 3-m resolution of PlanetScope satellite imagery to extend LAI prediction from UAV to satellite scales through transfer learning, using UAV-scale LAI estimates as a benchmark to validate cross-scale consistency. To address this challenge, this study proposed the LAI-TransNet, a two-stage transfer learning framework designed for precise and scalable soybean LAI prediction across large areas, demonstrating its effectiveness in cross-scale monitoring. In Stage 1, a UAV-scale benchmark is established using PROSAIL-simulated UAV reflectance data (UAV-Sim) and field-measured soybean LAI. Traditional machine learning, deep learning, and transfer learning models are trained on a hybrid UAV-Sim and field-measured dataset (UAV-Sim_Measured), with the transfer learning model CNN-TL, fine-tuned using pre-trained weights derived from UAV-Sim, achieving the highest accuracy (R2 = 0.81, RMSE = 0.64 m2/m2, rRMSE = 11.5 %). In Stage 2, LAI-TransNet is developed by fine-tuning the CNN-TL model on PlanetScope simulated data (PS-Sim), preprocessed via cross-domain mapping to align UAV and satellite spectral features. Real PlanetScope imagery is corrected for reflectance consistency with reference to UAV imagery spectral profiles. LAI-TransNet outperforms other deep learning models trained directly on PS-Sim (R2 = 0.69 vs. 0.60–0.63), ensuring robust cross-scale consistency. By bridging UAV and satellite scales, LAI-TransNet enables large-scale soybean LAI monitoring, enhancing precision agriculture management through improved monitoring with the PlanetScope imagery.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.aiia.2025.10.018
- OA Status
- gold
- References
- 59
- OpenAlex ID
- https://openalex.org/W4415901172
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415901172Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.aiia.2025.10.018Digital Object Identifier
- Title
-
Transfer learning-based soybean LAI estimations by integrating PROSAIL, UAV, and PlanetScope imageryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-05Full publication date if available
- Authors
-
Qing Li, Yanan Wei, Dalei Hao, Weijian Yu, Yelu ZengList of authors in order
- Landing page
-
https://doi.org/10.1016/j.aiia.2025.10.018Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.aiia.2025.10.018Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
59Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415901172 |
|---|---|
| doi | https://doi.org/10.1016/j.aiia.2025.10.018 |
| ids.doi | https://doi.org/10.1016/j.aiia.2025.10.018 |
| ids.openalex | https://openalex.org/W4415901172 |
| fwci | |
| type | article |
| title | Transfer learning-based soybean LAI estimations by integrating PROSAIL, UAV, and PlanetScope imagery |
| biblio.issue | 1 |
| biblio.volume | 16 |
| biblio.last_page | 380 |
| biblio.first_page | 365 |
| is_xpac | False |
| apc_list.value | 700 |
| apc_list.currency | USD |
| apc_list.value_usd | 700 |
| apc_paid.value | 700 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 700 |
| language | en |
| locations[0].id | doi:10.1016/j.aiia.2025.10.018 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210228435 |
| locations[0].source.issn | 2589-7217 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2589-7217 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Artificial Intelligence in Agriculture |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Artificial Intelligence in Agriculture |
| locations[0].landing_page_url | https://doi.org/10.1016/j.aiia.2025.10.018 |
| locations[1].id | pmh:oai:doaj.org/article:44d5ca83aa8742409bd5c3860a88b894 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Artificial Intelligence in Agriculture, Vol 16, Iss 1, Pp 365-380 (2026) |
| locations[1].landing_page_url | https://doaj.org/article/44d5ca83aa8742409bd5c3860a88b894 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100634596 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6073-1241 |
| authorships[0].author.display_name | Qing Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qing Li |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5113391436 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yanan Wei |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yanan Wei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5068100080 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3497-9774 |
| authorships[2].author.display_name | Dalei Hao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dalei Hao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5024490545 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1497-1759 |
| authorships[3].author.display_name | Weijian Yu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Weijian Yu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5067681796 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4267-1841 |
| authorships[4].author.display_name | Yelu Zeng |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yelu Zeng |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.aiia.2025.10.018 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-05T00:00:00 |
| display_name | Transfer learning-based soybean LAI estimations by integrating PROSAIL, UAV, and PlanetScope imagery |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-12T23:11:45.498971 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.aiia.2025.10.018 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210228435 |
| best_oa_location.source.issn | 2589-7217 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2589-7217 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Artificial Intelligence in Agriculture |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Artificial Intelligence in Agriculture |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.aiia.2025.10.018 |
| primary_location.id | doi:10.1016/j.aiia.2025.10.018 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210228435 |
| primary_location.source.issn | 2589-7217 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2589-7217 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Artificial Intelligence in Agriculture |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Artificial Intelligence in Agriculture |
| primary_location.landing_page_url | https://doi.org/10.1016/j.aiia.2025.10.018 |
| publication_date | 2025-11-05 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2018027183, https://openalex.org/W2030078894, https://openalex.org/W2603028033, https://openalex.org/W2094420085, https://openalex.org/W2033943160, https://openalex.org/W61452412, https://openalex.org/W2782772130, https://openalex.org/W2318242042, https://openalex.org/W2147205449, https://openalex.org/W2911964244, https://openalex.org/W1998776407, https://openalex.org/W2018636632, https://openalex.org/W4283805816, https://openalex.org/W2609044008, https://openalex.org/W2166312616, https://openalex.org/W1969568499, https://openalex.org/W2943316090, https://openalex.org/W4391528537, https://openalex.org/W3095491581, https://openalex.org/W3126826459, https://openalex.org/W2078996926, https://openalex.org/W2159961845, https://openalex.org/W2163410149, https://openalex.org/W2099704405, https://openalex.org/W2113410727, https://openalex.org/W2121025745, https://openalex.org/W4281629072, https://openalex.org/W4200412506, https://openalex.org/W2171979590, https://openalex.org/W2071172906, https://openalex.org/W2997248273, https://openalex.org/W3100777112, https://openalex.org/W4391751449, https://openalex.org/W2611080000, https://openalex.org/W2045643208, https://openalex.org/W3185391681, https://openalex.org/W2940726923, https://openalex.org/W4389113716, https://openalex.org/W2080868907, https://openalex.org/W1987997875, https://openalex.org/W2165698076, https://openalex.org/W4399925537, https://openalex.org/W4308158131, https://openalex.org/W2012686349, https://openalex.org/W2584359337, https://openalex.org/W4362519387, https://openalex.org/W4392481444, https://openalex.org/W2109030838, https://openalex.org/W2063623478, https://openalex.org/W633320881, https://openalex.org/W4406822972, https://openalex.org/W2791363193, https://openalex.org/W3169469595, https://openalex.org/W4286299948, https://openalex.org/W4206079995, https://openalex.org/W4401213931, https://openalex.org/W4220738031, https://openalex.org/W2075015559, https://openalex.org/W2764034829 |
| referenced_works_count | 59 |
| abstract_inverted_index.= | 162, 165, 169, 225 |
| abstract_inverted_index.a | 70, 85, 110, 137 |
| abstract_inverted_index.1, | 109 |
| abstract_inverted_index.2, | 174 |
| abstract_inverted_index.By | 233 |
| abstract_inverted_index.In | 107, 172 |
| abstract_inverted_index.To | 76 |
| abstract_inverted_index.as | 69 |
| abstract_inverted_index.at | 6 |
| abstract_inverted_index.by | 178 |
| abstract_inverted_index.in | 36, 104 |
| abstract_inverted_index.is | 11, 113, 176, 202 |
| abstract_inverted_index.of | 28, 49 |
| abstract_inverted_index.on | 136, 183, 222 |
| abstract_inverted_index.to | 53, 59, 72, 192, 209 |
| abstract_inverted_index.%). | 171 |
| abstract_inverted_index.(R2 | 161, 224 |
| abstract_inverted_index.3-m | 47 |
| abstract_inverted_index.LAI | 55, 67, 96, 243 |
| abstract_inverted_index.UAV | 29, 58, 117, 194, 210, 235 |
| abstract_inverted_index.and | 20, 46, 93, 121, 130, 140, 195, 236 |
| abstract_inverted_index.are | 134 |
| abstract_inverted_index.for | 91, 204 |
| abstract_inverted_index.its | 102 |
| abstract_inverted_index.the | 7, 25, 43, 83, 145, 158, 180, 253 |
| abstract_inverted_index.via | 189 |
| abstract_inverted_index.vs. | 227 |
| abstract_inverted_index.0.64 | 166 |
| abstract_inverted_index.0.69 | 226 |
| abstract_inverted_index.11.5 | 170 |
| abstract_inverted_index.Area | 2 |
| abstract_inverted_index.LAI. | 124 |
| abstract_inverted_index.Leaf | 1 |
| abstract_inverted_index.RMSE | 164 |
| abstract_inverted_index.Real | 199 |
| abstract_inverted_index.This | 40 |
| abstract_inverted_index.data | 119, 186 |
| abstract_inverted_index.deep | 128, 217 |
| abstract_inverted_index.from | 57, 155 |
| abstract_inverted_index.plot | 9 |
| abstract_inverted_index.this | 78, 80 |
| abstract_inverted_index.with | 144, 207, 252 |
| abstract_inverted_index.(LAI) | 4 |
| abstract_inverted_index.(UAV) | 18 |
| abstract_inverted_index.0.81, | 163 |
| abstract_inverted_index.Index | 3 |
| abstract_inverted_index.Stage | 108, 173 |
| abstract_inverted_index.align | 193 |
| abstract_inverted_index.broad | 44 |
| abstract_inverted_index.field | 21 |
| abstract_inverted_index.large | 99 |
| abstract_inverted_index.model | 148, 182 |
| abstract_inverted_index.other | 216 |
| abstract_inverted_index.rRMSE | 168 |
| abstract_inverted_index.scale | 10 |
| abstract_inverted_index.study | 41, 81 |
| abstract_inverted_index.using | 13, 65, 115, 151 |
| abstract_inverted_index.Aerial | 16 |
| abstract_inverted_index.CNN-TL | 181 |
| abstract_inverted_index.PS-Sim | 223 |
| abstract_inverted_index.across | 98 |
| abstract_inverted_index.areas, | 100 |
| abstract_inverted_index.extend | 54 |
| abstract_inverted_index.hybrid | 138 |
| abstract_inverted_index.m2/m2, | 167 |
| abstract_inverted_index.models | 133, 219 |
| abstract_inverted_index.remote | 33 |
| abstract_inverted_index.robust | 230 |
| abstract_inverted_index.scales | 61 |
| abstract_inverted_index.CNN-TL, | 149 |
| abstract_inverted_index.UAV-Sim | 139 |
| abstract_inverted_index.Vehicle | 17 |
| abstract_inverted_index.address | 77 |
| abstract_inverted_index.dataset | 142 |
| abstract_inverted_index.derived | 154 |
| abstract_inverted_index.enables | 240 |
| abstract_inverted_index.fields. | 39 |
| abstract_inverted_index.flights | 30 |
| abstract_inverted_index.highest | 159 |
| abstract_inverted_index.imagery | 19, 52, 201, 211 |
| abstract_inverted_index.limited | 26 |
| abstract_inverted_index.machine | 126 |
| abstract_inverted_index.mapping | 191 |
| abstract_inverted_index.precise | 92 |
| abstract_inverted_index.scales, | 238 |
| abstract_inverted_index.sensing | 34 |
| abstract_inverted_index.soybean | 8, 38, 95, 123, 242 |
| abstract_inverted_index.through | 62, 249 |
| abstract_inverted_index.trained | 135, 220 |
| abstract_inverted_index.weights | 153 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.UAV-Sim, | 156 |
| abstract_inverted_index.Unmanned | 15 |
| abstract_inverted_index.accuracy | 160 |
| abstract_inverted_index.bridging | 234 |
| abstract_inverted_index.coverage | 27, 45 |
| abstract_inverted_index.designed | 90 |
| abstract_inverted_index.directly | 221 |
| abstract_inverted_index.ensuring | 229 |
| abstract_inverted_index.imagery. | 255 |
| abstract_inverted_index.improved | 250 |
| abstract_inverted_index.learning | 88, 132, 147, 218 |
| abstract_inverted_index.proposed | 82 |
| abstract_inverted_index.samples. | 23 |
| abstract_inverted_index.scalable | 94 |
| abstract_inverted_index.spectral | 197, 212 |
| abstract_inverted_index.transfer | 63, 87, 131, 146 |
| abstract_inverted_index.validate | 73 |
| abstract_inverted_index.(PS-Sim), | 187 |
| abstract_inverted_index.(UAV-Sim) | 120 |
| abstract_inverted_index.UAV-scale | 66, 111 |
| abstract_inverted_index.achieving | 157 |
| abstract_inverted_index.benchmark | 71, 112 |
| abstract_inverted_index.corrected | 203 |
| abstract_inverted_index.developed | 177 |
| abstract_inverted_index.enhancing | 245 |
| abstract_inverted_index.estimates | 68 |
| abstract_inverted_index.expansive | 37 |
| abstract_inverted_index.features. | 198 |
| abstract_inverted_index.framework | 89 |
| abstract_inverted_index.learning, | 64, 127, 129 |
| abstract_inverted_index.leverages | 42 |
| abstract_inverted_index.precision | 246 |
| abstract_inverted_index.profiles. | 213 |
| abstract_inverted_index.reference | 208 |
| abstract_inverted_index.restricts | 31 |
| abstract_inverted_index.satellite | 51, 60, 196, 237 |
| abstract_inverted_index.simulated | 185 |
| abstract_inverted_index.two-stage | 86 |
| abstract_inverted_index.achievable | 12 |
| abstract_inverted_index.challenge, | 79 |
| abstract_inverted_index.fine-tuned | 150 |
| abstract_inverted_index.management | 248 |
| abstract_inverted_index.monitoring | 35, 251 |
| abstract_inverted_index.prediction | 56, 97 |
| abstract_inverted_index.resolution | 48 |
| abstract_inverted_index.PlanetScope | 50, 184, 200, 254 |
| abstract_inverted_index.Traditional | 125 |
| abstract_inverted_index.agriculture | 247 |
| abstract_inverted_index.consistency | 206 |
| abstract_inverted_index.cross-scale | 74, 105, 231 |
| abstract_inverted_index.established | 114 |
| abstract_inverted_index.estimations | 5 |
| abstract_inverted_index.fine-tuning | 179 |
| abstract_inverted_index.large-scale | 32, 241 |
| abstract_inverted_index.measurement | 22 |
| abstract_inverted_index.monitoring, | 244 |
| abstract_inverted_index.monitoring. | 106 |
| abstract_inverted_index.outperforms | 215 |
| abstract_inverted_index.pre-trained | 152 |
| abstract_inverted_index.reflectance | 118, 205 |
| abstract_inverted_index.LAI-TransNet | 175, 214, 239 |
| abstract_inverted_index.consistency. | 75, 232 |
| abstract_inverted_index.cross-domain | 190 |
| abstract_inverted_index.preprocessed | 188 |
| abstract_inverted_index.0.60–0.63), | 228 |
| abstract_inverted_index.LAI-TransNet, | 84 |
| abstract_inverted_index.demonstrating | 101 |
| abstract_inverted_index.effectiveness | 103 |
| abstract_inverted_index.field-measured | 122, 141 |
| abstract_inverted_index.high-resolution | 14 |
| abstract_inverted_index.PROSAIL-simulated | 116 |
| abstract_inverted_index.(UAV-Sim_Measured), | 143 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |