Transferable Multi-level Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multi-task Learning Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.26434/chemrxiv.12588170.v2
The development of efficient models for predicting specific properties through machine learning is of great importance for the innovation of chemistry and material science. However, predicting global electronic structure properties like frontier molecular orbital HOMO and LUMO energy levels and their HOMO-LUMO gaps from the small-sized molecule data to larger molecules remains a challenge. Here we develop a multi-level attention neural network, named DeepMoleNet, to enable chemical interpretable insights being fused into multi-task learning through (1) weighting contributions from various atoms and (2) taking the atom-centered symmetry functions (ACSFs) as the teacher descriptor. The efficient prediction of 12 properties including dipole moment, HOMO, and Gibbs free energy within chemical accuracy is achieved by using multiple benchmarks, both at the equilibrium and non-equilibrium geometries, including up to 110,000 records of data in QM9, 400,000 records in MD17 and 280,000 records in ANI-1ccx for random split evaluation. The good transferability for predicting larger molecules outside the training set is demonstrated in both equilibrium QM9 and Alchemy datasets at density functional theory (DFT) level. Additional tests on non-equilibrium molecular conformations from DFT-based MD17 dataset and ANI-1ccx dataset with coupled cluster accuracy as well as the public test sets of singlet fission molecules, biomolecules, long oligomers, and protein with up to 140 atoms show reasonable predictions for thermodynamics and electronic structure properties. The proposed multi-level attention neural network is applicable to high-throughput screening of numerous chemical species in both equilibrium and non-equilibrium molecular spaces to accelerate rational designs of drug-like molecules, material candidates, and chemical reactions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.26434/chemrxiv.12588170.v2
- https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/60c755aeee301c5046c7b1f7/original/transferable-multi-level-attention-neural-network-for-accurate-prediction-of-quantum-chemistry-properties-via-multi-task-learning.pdf
- OA Status
- gold
- Cited By
- 5
- References
- 93
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4231565157
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4231565157Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26434/chemrxiv.12588170.v2Digital Object Identifier
- Title
-
Transferable Multi-level Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multi-task LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-02-25Full publication date if available
- Authors
-
Ziteng Liu, Liqiang Lin, Qingqing Jia, Zheng Cheng, Yanyan Jiang, Yanwen Guo, Jing MaList of authors in order
- Landing page
-
https://doi.org/10.26434/chemrxiv.12588170.v2Publisher landing page
- PDF URL
-
https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/60c755aeee301c5046c7b1f7/original/transferable-multi-level-attention-neural-network-for-accurate-prediction-of-quantum-chemistry-properties-via-multi-task-learning.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/60c755aeee301c5046c7b1f7/original/transferable-multi-level-attention-neural-network-for-accurate-prediction-of-quantum-chemistry-properties-via-multi-task-learning.pdfDirect OA link when available
- Concepts
-
HOMO/LUMO, Artificial neural network, Chemistry, Density functional theory, Computer science, Statistical physics, Machine learning, Coupled cluster, Dipole, Molecule, Artificial intelligence, Computational chemistry, Physics, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 1, 2022: 1, 2021: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
93Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4231565157 |
|---|---|
| doi | https://doi.org/10.26434/chemrxiv.12588170.v2 |
| ids.doi | https://doi.org/10.26434/chemrxiv.12588170.v2 |
| ids.openalex | https://openalex.org/W4231565157 |
| fwci | 0.33524849 |
| type | preprint |
| title | Transferable Multi-level Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multi-task Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T10211 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Computational Drug Discovery Methods |
| topics[2].id | https://openalex.org/T10798 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.9750999808311462 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1606 |
| topics[2].subfield.display_name | Physical and Theoretical Chemistry |
| topics[2].display_name | Crystallography and molecular interactions |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C14158195 |
| concepts[0].level | 3 |
| concepts[0].score | 0.556477963924408 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q899637 |
| concepts[0].display_name | HOMO/LUMO |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5188042521476746 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C185592680 |
| concepts[2].level | 0 |
| concepts[2].score | 0.49524155259132385 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[2].display_name | Chemistry |
| concepts[3].id | https://openalex.org/C152365726 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4952038824558258 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1048589 |
| concepts[3].display_name | Density functional theory |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.483007550239563 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C121864883 |
| concepts[5].level | 1 |
| concepts[5].score | 0.42645686864852905 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[5].display_name | Statistical physics |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4229661226272583 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C19637589 |
| concepts[7].level | 3 |
| concepts[7].score | 0.42069464921951294 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1117940 |
| concepts[7].display_name | Coupled cluster |
| concepts[8].id | https://openalex.org/C173523689 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4193311929702759 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q215589 |
| concepts[8].display_name | Dipole |
| concepts[9].id | https://openalex.org/C32909587 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4119076728820801 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11369 |
| concepts[9].display_name | Molecule |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.402810275554657 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C147597530 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2904765009880066 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q369472 |
| concepts[11].display_name | Computational chemistry |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.22382310032844543 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C178790620 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[13].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/homo/lumo |
| keywords[0].score | 0.556477963924408 |
| keywords[0].display_name | HOMO/LUMO |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.5188042521476746 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/chemistry |
| keywords[2].score | 0.49524155259132385 |
| keywords[2].display_name | Chemistry |
| keywords[3].id | https://openalex.org/keywords/density-functional-theory |
| keywords[3].score | 0.4952038824558258 |
| keywords[3].display_name | Density functional theory |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.483007550239563 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/statistical-physics |
| keywords[5].score | 0.42645686864852905 |
| keywords[5].display_name | Statistical physics |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.4229661226272583 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/coupled-cluster |
| keywords[7].score | 0.42069464921951294 |
| keywords[7].display_name | Coupled cluster |
| keywords[8].id | https://openalex.org/keywords/dipole |
| keywords[8].score | 0.4193311929702759 |
| keywords[8].display_name | Dipole |
| keywords[9].id | https://openalex.org/keywords/molecule |
| keywords[9].score | 0.4119076728820801 |
| keywords[9].display_name | Molecule |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.402810275554657 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/computational-chemistry |
| keywords[11].score | 0.2904765009880066 |
| keywords[11].display_name | Computational chemistry |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.22382310032844543 |
| keywords[12].display_name | Physics |
| language | en |
| locations[0].id | doi:10.26434/chemrxiv.12588170.v2 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/60c755aeee301c5046c7b1f7/original/transferable-multi-level-attention-neural-network-for-accurate-prediction-of-quantum-chemistry-properties-via-multi-task-learning.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.26434/chemrxiv.12588170.v2 |
| locations[1].id | pmh:oai:figshare.com:article/12588170 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400572 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[1].source.host_organization | https://openalex.org/I196829312 |
| locations[1].source.host_organization_name | La Trobe University |
| locations[1].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[1].license | cc-by-nc-nd |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5049087292 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5791-6015 |
| authorships[0].author.display_name | Ziteng Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I881766915 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China |
| authorships[0].institutions[0].id | https://openalex.org/I881766915 |
| authorships[0].institutions[0].ror | https://ror.org/01rxvg760 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I881766915 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ziteng Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China |
| authorships[1].author.id | https://openalex.org/A5085746619 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2594-6495 |
| authorships[1].author.display_name | Liqiang Lin |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I881766915 |
| authorships[1].affiliations[0].raw_affiliation_string | National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, P. R. China |
| authorships[1].institutions[0].id | https://openalex.org/I881766915 |
| authorships[1].institutions[0].ror | https://ror.org/01rxvg760 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I881766915 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liqiang Lin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, P. R. China |
| authorships[2].author.id | https://openalex.org/A5100567325 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Qingqing Jia |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I881766915 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China |
| authorships[2].institutions[0].id | https://openalex.org/I881766915 |
| authorships[2].institutions[0].ror | https://ror.org/01rxvg760 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I881766915 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nanjing University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qingqing Jia |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China |
| authorships[3].author.id | https://openalex.org/A5108860079 |
| authorships[3].author.orcid | https://orcid.org/0009-0007-7740-634X |
| authorships[3].author.display_name | Zheng Cheng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I881766915 |
| authorships[3].affiliations[0].raw_affiliation_string | Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China |
| authorships[3].institutions[0].id | https://openalex.org/I881766915 |
| authorships[3].institutions[0].ror | https://ror.org/01rxvg760 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I881766915 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Nanjing University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zheng Cheng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China |
| authorships[4].author.id | https://openalex.org/A5044742951 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7866-4689 |
| authorships[4].author.display_name | Yanyan Jiang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I881766915 |
| authorships[4].affiliations[0].raw_affiliation_string | National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, P. R. China |
| authorships[4].institutions[0].id | https://openalex.org/I881766915 |
| authorships[4].institutions[0].ror | https://ror.org/01rxvg760 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I881766915 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Nanjing University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yanyan Jiang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, P. R. China |
| authorships[5].author.id | https://openalex.org/A5009275869 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7605-5206 |
| authorships[5].author.display_name | Yanwen Guo |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I881766915 |
| authorships[5].affiliations[0].raw_affiliation_string | National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, P. R. China |
| authorships[5].institutions[0].id | https://openalex.org/I881766915 |
| authorships[5].institutions[0].ror | https://ror.org/01rxvg760 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I881766915 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Nanjing University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yanwen Guo |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, P. R. China |
| authorships[6].author.id | https://openalex.org/A5020347295 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5848-9775 |
| authorships[6].author.display_name | Jing Ma |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I881766915 |
| authorships[6].affiliations[0].raw_affiliation_string | Nanjing university |
| authorships[6].institutions[0].id | https://openalex.org/I881766915 |
| authorships[6].institutions[0].ror | https://ror.org/01rxvg760 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I881766915 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Nanjing University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Jing Ma |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Nanjing university |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/60c755aeee301c5046c7b1f7/original/transferable-multi-level-attention-neural-network-for-accurate-prediction-of-quantum-chemistry-properties-via-multi-task-learning.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Transferable Multi-level Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multi-task Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-25T14:43:58.451035 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W2605511881, https://openalex.org/W1955479687, https://openalex.org/W2153026539, https://openalex.org/W1980233367, https://openalex.org/W1882426123, https://openalex.org/W2583528870, https://openalex.org/W3111425033, https://openalex.org/W2794961176, https://openalex.org/W2020723511, https://openalex.org/W3035585639 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.26434/chemrxiv.12588170.v2 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/60c755aeee301c5046c7b1f7/original/transferable-multi-level-attention-neural-network-for-accurate-prediction-of-quantum-chemistry-properties-via-multi-task-learning.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.26434/chemrxiv.12588170.v2 |
| primary_location.id | doi:10.26434/chemrxiv.12588170.v2 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/60c755aeee301c5046c7b1f7/original/transferable-multi-level-attention-neural-network-for-accurate-prediction-of-quantum-chemistry-properties-via-multi-task-learning.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.26434/chemrxiv.12588170.v2 |
| publication_date | 2021-02-25 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2057858097, https://openalex.org/W3208624098, https://openalex.org/W2891365537, https://openalex.org/W4385245566, https://openalex.org/W2883021798, https://openalex.org/W2527189750, https://openalex.org/W4312039930, https://openalex.org/W3106419168, https://openalex.org/W3010488723, https://openalex.org/W2954040471, https://openalex.org/W2080635178, https://openalex.org/W2585152223, https://openalex.org/W2766856748, https://openalex.org/W3101643101, https://openalex.org/W2948990653, https://openalex.org/W2606780347, https://openalex.org/W2949095042, https://openalex.org/W2984234582, https://openalex.org/W2133564696, https://openalex.org/W2923693308, https://openalex.org/W2740388348, https://openalex.org/W2753962198, https://openalex.org/W2082369519, https://openalex.org/W2584079826, https://openalex.org/W2917650338, https://openalex.org/W2794279393, https://openalex.org/W4231071693, https://openalex.org/W1900088949, https://openalex.org/W2017646651, https://openalex.org/W2962876364, https://openalex.org/W2885918708, https://openalex.org/W1967824245, https://openalex.org/W4244846477, https://openalex.org/W3049675384, https://openalex.org/W4286715520, https://openalex.org/W2039077821, https://openalex.org/W2955667055, https://openalex.org/W2788703071, https://openalex.org/W2524276051, https://openalex.org/W2891523768, https://openalex.org/W2105616783, https://openalex.org/W3024655990, https://openalex.org/W3102449990, https://openalex.org/W3085090411, https://openalex.org/W2778051509, https://openalex.org/W1968392598, https://openalex.org/W2046634948, https://openalex.org/W2903198840, https://openalex.org/W1975997599, https://openalex.org/W1988037271, https://openalex.org/W4231542468, https://openalex.org/W3099732023, https://openalex.org/W2967766509, https://openalex.org/W2951936753, https://openalex.org/W1972745812, https://openalex.org/W2885841934, https://openalex.org/W2061179540, https://openalex.org/W1522301498, https://openalex.org/W3031309525, https://openalex.org/W2964268718, https://openalex.org/W2971690404, https://openalex.org/W2962872055, https://openalex.org/W2055316829, https://openalex.org/W2092196700, https://openalex.org/W2338402873, https://openalex.org/W2123306226, https://openalex.org/W2594183968, https://openalex.org/W4287828570, https://openalex.org/W2742127985, https://openalex.org/W2016366655, https://openalex.org/W2012121165, https://openalex.org/W2077538128, https://openalex.org/W2788317900, https://openalex.org/W2083415705, https://openalex.org/W2104489082, https://openalex.org/W2071955309, https://openalex.org/W2000957843, https://openalex.org/W2033777798, https://openalex.org/W2024565483, https://openalex.org/W2900369799, https://openalex.org/W2029413789, https://openalex.org/W2768213699, https://openalex.org/W2884430236, https://openalex.org/W1992985800, https://openalex.org/W2470768373, https://openalex.org/W4255556435, https://openalex.org/W2810220676, https://openalex.org/W2738306938, https://openalex.org/W1531674615, https://openalex.org/W2037464828, https://openalex.org/W617139115, https://openalex.org/W2165644552, https://openalex.org/W2755837508 |
| referenced_works_count | 93 |
| abstract_inverted_index.a | 52, 57 |
| abstract_inverted_index.12 | 97 |
| abstract_inverted_index.as | 89, 188, 190 |
| abstract_inverted_index.at | 117, 165 |
| abstract_inverted_index.by | 112 |
| abstract_inverted_index.in | 130, 134, 139, 158, 233 |
| abstract_inverted_index.is | 12, 110, 156, 224 |
| abstract_inverted_index.of | 2, 13, 19, 96, 128, 195, 229, 244 |
| abstract_inverted_index.on | 173 |
| abstract_inverted_index.to | 48, 64, 125, 206, 226, 240 |
| abstract_inverted_index.up | 124, 205 |
| abstract_inverted_index.we | 55 |
| abstract_inverted_index.(1) | 75 |
| abstract_inverted_index.(2) | 82 |
| abstract_inverted_index.140 | 207 |
| abstract_inverted_index.QM9 | 161 |
| abstract_inverted_index.The | 0, 93, 145, 218 |
| abstract_inverted_index.and | 21, 35, 39, 81, 103, 120, 136, 162, 181, 202, 214, 236, 249 |
| abstract_inverted_index.for | 5, 16, 141, 148, 212 |
| abstract_inverted_index.set | 155 |
| abstract_inverted_index.the | 17, 44, 84, 90, 118, 153, 191 |
| abstract_inverted_index.HOMO | 34 |
| abstract_inverted_index.Here | 54 |
| abstract_inverted_index.LUMO | 36 |
| abstract_inverted_index.MD17 | 135, 179 |
| abstract_inverted_index.QM9, | 131 |
| abstract_inverted_index.both | 116, 159, 234 |
| abstract_inverted_index.data | 47, 129 |
| abstract_inverted_index.free | 105 |
| abstract_inverted_index.from | 43, 78, 177 |
| abstract_inverted_index.gaps | 42 |
| abstract_inverted_index.good | 146 |
| abstract_inverted_index.into | 71 |
| abstract_inverted_index.like | 30 |
| abstract_inverted_index.long | 200 |
| abstract_inverted_index.sets | 194 |
| abstract_inverted_index.show | 209 |
| abstract_inverted_index.test | 193 |
| abstract_inverted_index.well | 189 |
| abstract_inverted_index.with | 184, 204 |
| abstract_inverted_index.(DFT) | 169 |
| abstract_inverted_index.Gibbs | 104 |
| abstract_inverted_index.HOMO, | 102 |
| abstract_inverted_index.atoms | 80, 208 |
| abstract_inverted_index.being | 69 |
| abstract_inverted_index.fused | 70 |
| abstract_inverted_index.great | 14 |
| abstract_inverted_index.named | 62 |
| abstract_inverted_index.split | 143 |
| abstract_inverted_index.tests | 172 |
| abstract_inverted_index.their | 40 |
| abstract_inverted_index.using | 113 |
| abstract_inverted_index.dipole | 100 |
| abstract_inverted_index.enable | 65 |
| abstract_inverted_index.energy | 37, 106 |
| abstract_inverted_index.global | 26 |
| abstract_inverted_index.larger | 49, 150 |
| abstract_inverted_index.level. | 170 |
| abstract_inverted_index.levels | 38 |
| abstract_inverted_index.models | 4 |
| abstract_inverted_index.neural | 60, 222 |
| abstract_inverted_index.public | 192 |
| abstract_inverted_index.random | 142 |
| abstract_inverted_index.spaces | 239 |
| abstract_inverted_index.taking | 83 |
| abstract_inverted_index.theory | 168 |
| abstract_inverted_index.within | 107 |
| abstract_inverted_index.(ACSFs) | 88 |
| abstract_inverted_index.110,000 | 126 |
| abstract_inverted_index.280,000 | 137 |
| abstract_inverted_index.400,000 | 132 |
| abstract_inverted_index.Alchemy | 163 |
| abstract_inverted_index.cluster | 186 |
| abstract_inverted_index.coupled | 185 |
| abstract_inverted_index.dataset | 180, 183 |
| abstract_inverted_index.density | 166 |
| abstract_inverted_index.designs | 243 |
| abstract_inverted_index.develop | 56 |
| abstract_inverted_index.fission | 197 |
| abstract_inverted_index.machine | 10 |
| abstract_inverted_index.moment, | 101 |
| abstract_inverted_index.network | 223 |
| abstract_inverted_index.orbital | 33 |
| abstract_inverted_index.outside | 152 |
| abstract_inverted_index.protein | 203 |
| abstract_inverted_index.records | 127, 133, 138 |
| abstract_inverted_index.remains | 51 |
| abstract_inverted_index.singlet | 196 |
| abstract_inverted_index.species | 232 |
| abstract_inverted_index.teacher | 91 |
| abstract_inverted_index.through | 9, 74 |
| abstract_inverted_index.various | 79 |
| abstract_inverted_index.ANI-1ccx | 140, 182 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.accuracy | 109, 187 |
| abstract_inverted_index.achieved | 111 |
| abstract_inverted_index.chemical | 66, 108, 231, 250 |
| abstract_inverted_index.datasets | 164 |
| abstract_inverted_index.frontier | 31 |
| abstract_inverted_index.insights | 68 |
| abstract_inverted_index.learning | 11, 73 |
| abstract_inverted_index.material | 22, 247 |
| abstract_inverted_index.molecule | 46 |
| abstract_inverted_index.multiple | 114 |
| abstract_inverted_index.network, | 61 |
| abstract_inverted_index.numerous | 230 |
| abstract_inverted_index.proposed | 219 |
| abstract_inverted_index.rational | 242 |
| abstract_inverted_index.science. | 23 |
| abstract_inverted_index.specific | 7 |
| abstract_inverted_index.symmetry | 86 |
| abstract_inverted_index.training | 154 |
| abstract_inverted_index.DFT-based | 178 |
| abstract_inverted_index.HOMO-LUMO | 41 |
| abstract_inverted_index.attention | 59, 221 |
| abstract_inverted_index.chemistry | 20 |
| abstract_inverted_index.drug-like | 245 |
| abstract_inverted_index.efficient | 3, 94 |
| abstract_inverted_index.functions | 87 |
| abstract_inverted_index.including | 99, 123 |
| abstract_inverted_index.molecular | 32, 175, 238 |
| abstract_inverted_index.molecules | 50, 151 |
| abstract_inverted_index.screening | 228 |
| abstract_inverted_index.structure | 28, 216 |
| abstract_inverted_index.weighting | 76 |
| abstract_inverted_index.Additional | 171 |
| abstract_inverted_index.accelerate | 241 |
| abstract_inverted_index.applicable | 225 |
| abstract_inverted_index.challenge. | 53 |
| abstract_inverted_index.electronic | 27, 215 |
| abstract_inverted_index.functional | 167 |
| abstract_inverted_index.importance | 15 |
| abstract_inverted_index.innovation | 18 |
| abstract_inverted_index.molecules, | 198, 246 |
| abstract_inverted_index.multi-task | 72 |
| abstract_inverted_index.oligomers, | 201 |
| abstract_inverted_index.predicting | 6, 25, 149 |
| abstract_inverted_index.prediction | 95 |
| abstract_inverted_index.properties | 8, 29, 98 |
| abstract_inverted_index.reactions. | 251 |
| abstract_inverted_index.reasonable | 210 |
| abstract_inverted_index.benchmarks, | 115 |
| abstract_inverted_index.candidates, | 248 |
| abstract_inverted_index.descriptor. | 92 |
| abstract_inverted_index.development | 1 |
| abstract_inverted_index.equilibrium | 119, 160, 235 |
| abstract_inverted_index.evaluation. | 144 |
| abstract_inverted_index.geometries, | 122 |
| abstract_inverted_index.multi-level | 58, 220 |
| abstract_inverted_index.predictions | 211 |
| abstract_inverted_index.properties. | 217 |
| abstract_inverted_index.small-sized | 45 |
| abstract_inverted_index.DeepMoleNet, | 63 |
| abstract_inverted_index.demonstrated | 157 |
| abstract_inverted_index.atom-centered | 85 |
| abstract_inverted_index.biomolecules, | 199 |
| abstract_inverted_index.conformations | 176 |
| abstract_inverted_index.contributions | 77 |
| abstract_inverted_index.interpretable | 67 |
| abstract_inverted_index.thermodynamics | 213 |
| abstract_inverted_index.high-throughput | 227 |
| abstract_inverted_index.non-equilibrium | 121, 174, 237 |
| abstract_inverted_index.transferability | 147 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.52369185 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |