Transferable Multi-level Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multi-task Learning Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.26434/chemrxiv.12588170.v1
The development of efficient models for predicting specific properties through machine learning is of great importance for the innovation of chemistry and material science. However, predicting electronic structure properties like frontier molecular orbital HOMO and LUMO energy levels and their HOMO-LUMO gaps from the small-sized molecule data to larger molecules remains a challenge. Here we develop a multi-level attention strategy that enables chemical interpretable insights to be fused into multi-task learning of up to 110,000 records of data in QM9 for random split evaluation. The good transferability for predicting larger molecules outside the training set is demonstrated in both QM9 and Alchemy datasets. The efficient and accurate prediction of 12 properties including dipole moment, HOMO, and Gibbs free energy within chemical accuracy is achieved by using our specifically designed interpretable multi-level attention neural network, named as DeepMoleNet. Remarkably, the present multi-task deep learning model adopts the atom-centered symmetry functions (ACSFs) descriptor as one of the prediction targets, rather than using ACSFs as input in the conventional way. The proposed multi-level attention neural network is applicable to high-throughput screening of numerous chemical species to accelerate rational designs of drug, material, and chemical reactions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.26434/chemrxiv.12588170.v1
- https://chemrxiv.org/ndownloader/files/23553335
- OA Status
- gold
- Cited By
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4238485404
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4238485404Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26434/chemrxiv.12588170.v1Digital Object Identifier
- Title
-
Transferable Multi-level Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multi-task LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-07-02Full publication date if available
- Authors
-
Ziteng Liu, Liqiang Lin, Qingqing Jia, Zheng Cheng, Yanyan Jiang, Yanwen Guo, Jing MaList of authors in order
- Landing page
-
https://doi.org/10.26434/chemrxiv.12588170.v1Publisher landing page
- PDF URL
-
https://chemrxiv.org/ndownloader/files/23553335Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://chemrxiv.org/ndownloader/files/23553335Direct OA link when available
- Concepts
-
Computer science, Artificial neural network, Artificial intelligence, HOMO/LUMO, Machine learning, Task (project management), Set (abstract data type), Quantum chemical, Deep learning, Molecular descriptor, Quantitative structure–activity relationship, Molecule, Chemistry, Economics, Organic chemistry, Management, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2022: 3, 2021: 6, 2020: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4238485404 |
|---|---|
| doi | https://doi.org/10.26434/chemrxiv.12588170.v1 |
| ids.doi | https://doi.org/10.26434/chemrxiv.12588170.v1 |
| ids.openalex | https://openalex.org/W4238485404 |
| fwci | 0.94783949 |
| type | preprint |
| title | Transferable Multi-level Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multi-task Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T10211 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Computational Drug Discovery Methods |
| topics[2].id | https://openalex.org/T12327 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.9878000020980835 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1606 |
| topics[2].subfield.display_name | Physical and Theoretical Chemistry |
| topics[2].display_name | Various Chemistry Research Topics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6148642897605896 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5934466123580933 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.561543345451355 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C14158195 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5510436296463013 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q899637 |
| concepts[3].display_name | HOMO/LUMO |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.544803261756897 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C2780451532 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5139457583427429 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[5].display_name | Task (project management) |
| concepts[6].id | https://openalex.org/C177264268 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49257880449295044 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[6].display_name | Set (abstract data type) |
| concepts[7].id | https://openalex.org/C2991951333 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4735243320465088 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q188403 |
| concepts[7].display_name | Quantum chemical |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4370572566986084 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C164923092 |
| concepts[9].level | 3 |
| concepts[9].score | 0.42915040254592896 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3705921 |
| concepts[9].display_name | Molecular descriptor |
| concepts[10].id | https://openalex.org/C164126121 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3843877911567688 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q766383 |
| concepts[10].display_name | Quantitative structure–activity relationship |
| concepts[11].id | https://openalex.org/C32909587 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3154640793800354 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11369 |
| concepts[11].display_name | Molecule |
| concepts[12].id | https://openalex.org/C185592680 |
| concepts[12].level | 0 |
| concepts[12].score | 0.3098561763763428 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[12].display_name | Chemistry |
| concepts[13].id | https://openalex.org/C162324750 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[13].display_name | Economics |
| concepts[14].id | https://openalex.org/C178790620 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[14].display_name | Organic chemistry |
| concepts[15].id | https://openalex.org/C187736073 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[15].display_name | Management |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6148642897605896 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.5934466123580933 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.561543345451355 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/homo/lumo |
| keywords[3].score | 0.5510436296463013 |
| keywords[3].display_name | HOMO/LUMO |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.544803261756897 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/task |
| keywords[5].score | 0.5139457583427429 |
| keywords[5].display_name | Task (project management) |
| keywords[6].id | https://openalex.org/keywords/set |
| keywords[6].score | 0.49257880449295044 |
| keywords[6].display_name | Set (abstract data type) |
| keywords[7].id | https://openalex.org/keywords/quantum-chemical |
| keywords[7].score | 0.4735243320465088 |
| keywords[7].display_name | Quantum chemical |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.4370572566986084 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/molecular-descriptor |
| keywords[9].score | 0.42915040254592896 |
| keywords[9].display_name | Molecular descriptor |
| keywords[10].id | https://openalex.org/keywords/quantitative-structure–activity-relationship |
| keywords[10].score | 0.3843877911567688 |
| keywords[10].display_name | Quantitative structure–activity relationship |
| keywords[11].id | https://openalex.org/keywords/molecule |
| keywords[11].score | 0.3154640793800354 |
| keywords[11].display_name | Molecule |
| keywords[12].id | https://openalex.org/keywords/chemistry |
| keywords[12].score | 0.3098561763763428 |
| keywords[12].display_name | Chemistry |
| language | en |
| locations[0].id | doi:10.26434/chemrxiv.12588170.v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://chemrxiv.org/ndownloader/files/23553335 |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.26434/chemrxiv.12588170.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5049087292 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5791-6015 |
| authorships[0].author.display_name | Ziteng Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ziteng Liu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5085746619 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2594-6495 |
| authorships[1].author.display_name | Liqiang Lin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liqiang Lin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100567325 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Qingqing Jia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qingqing Jia |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5108860079 |
| authorships[3].author.orcid | https://orcid.org/0009-0007-7740-634X |
| authorships[3].author.display_name | Zheng Cheng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zheng Cheng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5044742951 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7866-4689 |
| authorships[4].author.display_name | Yanyan Jiang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yanyan Jiang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5009275869 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7605-5206 |
| authorships[5].author.display_name | Yanwen Guo |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yanwen Guo |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5020347295 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5848-9775 |
| authorships[6].author.display_name | Jing Ma |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I881766915 |
| authorships[6].affiliations[0].raw_affiliation_string | Nanjing university |
| authorships[6].institutions[0].id | https://openalex.org/I881766915 |
| authorships[6].institutions[0].ror | https://ror.org/01rxvg760 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I881766915 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Nanjing University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Jing Ma |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Nanjing university |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://chemrxiv.org/ndownloader/files/23553335 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Transferable Multi-level Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multi-task Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W2148009427, https://openalex.org/W1518515965, https://openalex.org/W1978931025, https://openalex.org/W3159291941, https://openalex.org/W2063120953, https://openalex.org/W2753230657, https://openalex.org/W2165637039, https://openalex.org/W2026843845, https://openalex.org/W2889092195, https://openalex.org/W2155827364 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 6 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.26434/chemrxiv.12588170.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://chemrxiv.org/ndownloader/files/23553335 |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.26434/chemrxiv.12588170.v1 |
| primary_location.id | doi:10.26434/chemrxiv.12588170.v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://chemrxiv.org/ndownloader/files/23553335 |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.26434/chemrxiv.12588170.v1 |
| publication_date | 2020-07-02 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 51, 56 |
| abstract_inverted_index.12 | 109 |
| abstract_inverted_index.as | 135, 151, 161 |
| abstract_inverted_index.be | 66 |
| abstract_inverted_index.by | 124 |
| abstract_inverted_index.in | 78, 97, 163 |
| abstract_inverted_index.is | 12, 95, 122, 173 |
| abstract_inverted_index.of | 2, 13, 19, 71, 76, 108, 153, 178, 186 |
| abstract_inverted_index.to | 47, 65, 73, 175, 182 |
| abstract_inverted_index.up | 72 |
| abstract_inverted_index.we | 54 |
| abstract_inverted_index.QM9 | 79, 99 |
| abstract_inverted_index.The | 0, 84, 103, 167 |
| abstract_inverted_index.and | 21, 34, 38, 100, 105, 115, 189 |
| abstract_inverted_index.for | 5, 16, 80, 87 |
| abstract_inverted_index.one | 152 |
| abstract_inverted_index.our | 126 |
| abstract_inverted_index.set | 94 |
| abstract_inverted_index.the | 17, 43, 92, 138, 145, 154, 164 |
| abstract_inverted_index.HOMO | 33 |
| abstract_inverted_index.Here | 53 |
| abstract_inverted_index.LUMO | 35 |
| abstract_inverted_index.both | 98 |
| abstract_inverted_index.data | 46, 77 |
| abstract_inverted_index.deep | 141 |
| abstract_inverted_index.free | 117 |
| abstract_inverted_index.from | 42 |
| abstract_inverted_index.gaps | 41 |
| abstract_inverted_index.good | 85 |
| abstract_inverted_index.into | 68 |
| abstract_inverted_index.like | 29 |
| abstract_inverted_index.than | 158 |
| abstract_inverted_index.that | 60 |
| abstract_inverted_index.way. | 166 |
| abstract_inverted_index.ACSFs | 160 |
| abstract_inverted_index.Gibbs | 116 |
| abstract_inverted_index.HOMO, | 114 |
| abstract_inverted_index.drug, | 187 |
| abstract_inverted_index.fused | 67 |
| abstract_inverted_index.great | 14 |
| abstract_inverted_index.input | 162 |
| abstract_inverted_index.model | 143 |
| abstract_inverted_index.named | 134 |
| abstract_inverted_index.split | 82 |
| abstract_inverted_index.their | 39 |
| abstract_inverted_index.using | 125, 159 |
| abstract_inverted_index.adopts | 144 |
| abstract_inverted_index.dipole | 112 |
| abstract_inverted_index.energy | 36, 118 |
| abstract_inverted_index.larger | 48, 89 |
| abstract_inverted_index.levels | 37 |
| abstract_inverted_index.models | 4 |
| abstract_inverted_index.neural | 132, 171 |
| abstract_inverted_index.random | 81 |
| abstract_inverted_index.rather | 157 |
| abstract_inverted_index.within | 119 |
| abstract_inverted_index.(ACSFs) | 149 |
| abstract_inverted_index.110,000 | 74 |
| abstract_inverted_index.Alchemy | 101 |
| abstract_inverted_index.designs | 185 |
| abstract_inverted_index.develop | 55 |
| abstract_inverted_index.enables | 61 |
| abstract_inverted_index.machine | 10 |
| abstract_inverted_index.moment, | 113 |
| abstract_inverted_index.network | 172 |
| abstract_inverted_index.orbital | 32 |
| abstract_inverted_index.outside | 91 |
| abstract_inverted_index.present | 139 |
| abstract_inverted_index.records | 75 |
| abstract_inverted_index.remains | 50 |
| abstract_inverted_index.species | 181 |
| abstract_inverted_index.through | 9 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.accuracy | 121 |
| abstract_inverted_index.accurate | 106 |
| abstract_inverted_index.achieved | 123 |
| abstract_inverted_index.chemical | 62, 120, 180, 190 |
| abstract_inverted_index.designed | 128 |
| abstract_inverted_index.frontier | 30 |
| abstract_inverted_index.insights | 64 |
| abstract_inverted_index.learning | 11, 70, 142 |
| abstract_inverted_index.material | 22 |
| abstract_inverted_index.molecule | 45 |
| abstract_inverted_index.network, | 133 |
| abstract_inverted_index.numerous | 179 |
| abstract_inverted_index.proposed | 168 |
| abstract_inverted_index.rational | 184 |
| abstract_inverted_index.science. | 23 |
| abstract_inverted_index.specific | 7 |
| abstract_inverted_index.strategy | 59 |
| abstract_inverted_index.symmetry | 147 |
| abstract_inverted_index.targets, | 156 |
| abstract_inverted_index.training | 93 |
| abstract_inverted_index.HOMO-LUMO | 40 |
| abstract_inverted_index.attention | 58, 131, 170 |
| abstract_inverted_index.chemistry | 20 |
| abstract_inverted_index.datasets. | 102 |
| abstract_inverted_index.efficient | 3, 104 |
| abstract_inverted_index.functions | 148 |
| abstract_inverted_index.including | 111 |
| abstract_inverted_index.material, | 188 |
| abstract_inverted_index.molecular | 31 |
| abstract_inverted_index.molecules | 49, 90 |
| abstract_inverted_index.screening | 177 |
| abstract_inverted_index.structure | 27 |
| abstract_inverted_index.accelerate | 183 |
| abstract_inverted_index.applicable | 174 |
| abstract_inverted_index.challenge. | 52 |
| abstract_inverted_index.descriptor | 150 |
| abstract_inverted_index.electronic | 26 |
| abstract_inverted_index.importance | 15 |
| abstract_inverted_index.innovation | 18 |
| abstract_inverted_index.multi-task | 69, 140 |
| abstract_inverted_index.predicting | 6, 25, 88 |
| abstract_inverted_index.prediction | 107, 155 |
| abstract_inverted_index.properties | 8, 28, 110 |
| abstract_inverted_index.reactions. | 191 |
| abstract_inverted_index.Remarkably, | 137 |
| abstract_inverted_index.development | 1 |
| abstract_inverted_index.evaluation. | 83 |
| abstract_inverted_index.multi-level | 57, 130, 169 |
| abstract_inverted_index.small-sized | 44 |
| abstract_inverted_index.DeepMoleNet. | 136 |
| abstract_inverted_index.conventional | 165 |
| abstract_inverted_index.demonstrated | 96 |
| abstract_inverted_index.specifically | 127 |
| abstract_inverted_index.atom-centered | 146 |
| abstract_inverted_index.interpretable | 63, 129 |
| abstract_inverted_index.high-throughput | 176 |
| abstract_inverted_index.transferability | 86 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.71535995 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |